On radial Fourier multipliers and almost everywhere convergence

We study almost everywhere ( a.e.) convergence on Lp and Lorentz spaces Lp,q , for variants of Riesz means at the critical index λ(p)=d(1/2–1/p)–1/2 for p>2d/(d–1) . For the classical Riesz means Stλ(p) , we show a.e. convergence for f∈Lp,1 . We derive more general results for radial and quasi‐radial Fourier multipliers and associated maximal functions, acting on L2 spaces with power weights and their interpolation spaces. We also include a characterization of boundedness of such multiplier transformations on weighted L2 spaces, and a sharp endpoint bound for Stein's square function associated with the Riesz means.

[1]  Sanghyuk Lee,et al.  Square function estimates for the Bochner-Riesz means , 2017, 1708.01084.

[2]  Sanghyuk Lee,et al.  SQUARE FUNCTIONS AND MAXIMAL OPERATORS ASSOCIATED WITH RADIAL FOURIER MULTIPLIERS , 2012, 1207.6582.

[3]  Sanghyuk Lee,et al.  Improved bounds for Stein's square functions , 2010, 1012.2159.

[4]  M. Annoni Almost everywhere convergence for modified Bochner Riesz means at the critical index for [rho] [greater than or equal to] 2 , 2010 .

[5]  G. Garrigós,et al.  Characterizations of Hankel multipliers , 2007, 0708.2828.

[6]  R. Serfling,et al.  Asymptotic Expansions—I , 2006 .

[7]  Shuichi Sato Some weighted estimates for Littlewood–Paley functions and radial multipliers , 2003 .

[8]  T. Tao On the maximal Bochner-Riesz conjecture in the plane for p < 2 , 2002 .

[9]  Elias M. Stein,et al.  Regularity properties of Fourier integral operators , 1991 .

[10]  A. Carbery,et al.  Almost Everywhere Summability of Fourier Integrals , 1988 .

[11]  A. Carbery,et al.  Almost-Everywhere Convergence of Fourier Integrals for Functions in Sobolev Spaces, and an $L_2$-Localisation Principle. , 1988 .

[12]  A. Seeger Necessary conditions for quasiradial Fourier multipliers , 1987 .

[13]  A. Seeger On quasiradial Fourier multiplier and their maximal functions. , 1986 .

[14]  A. Baernstein,et al.  Embedding and multiplier theorems for ^{}(ⁿ) , 1985 .

[15]  J. García-cuerva,et al.  Weighted norm inequalities and related topics , 1985 .

[16]  M. Christ,et al.  On almost everywhere convergence of Bochner-Riesz means in higher dimensions , 1985 .

[17]  B. Muckenhoupt,et al.  L2 multipliers with power weights , 1983 .

[18]  A. Carbery The boundedness of the maximal Bochner-Riesz operator on $L^4(\mathbf{R}^2)$ , 1983 .

[19]  H. Triebel Theory Of Function Spaces , 1983 .

[20]  C. Herz,et al.  Lipschitz Spaces and Bernstein's Theorem on Absolutely Convergent Fourier Transforms* , 1968 .

[21]  E. Stein,et al.  On the limits of sequences of operators , 1961 .