Intelligent routes to the controlled synthesis of nanoparticles.

We describe an autonomous 'black-box' system for the controlled synthesis of fluorescent nanoparticles. The system uses a microfluidic reactor to carry out the synthesis and an in-line spectrometer to monitor the emission spectra of the emergent particles. The acquired data is fed into a control algorithm which reduces each spectrum to a scalar 'dissatisfaction coefficient' and then intelligently updates the reaction conditions in an effort to minimise this coefficient and so drive the system towards a desired goal. In the tests reported here, CdSe nanoparticles were prepared by separately injecting solutions of CdO and Se into the two inlets of a heated y-shaped microfluidic reactor. A noise-tolerant global search algorithm was then used to efficiently identify-without any human intervention-the injection rates and temperature that yielded the optimum intensity for a chosen emission wavelength.

[1]  Xiaogang Peng,et al.  Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. , 2001, Journal of the American Chemical Society.

[2]  Sulabha K. Kulkarni,et al.  Nanoshell particles: synthesis, properties and applications , 2006 .

[3]  C. Sönnichsen,et al.  Microfluidic continuous flow synthesis of rod-shaped gold and silver nanocrystals. , 2006, Physical Chemistry, Chemical Physics - PCCP.

[4]  O. Velev,et al.  Anisotropic particle synthesis in dielectrophoretically controlled microdroplet reactors , 2004, Nature materials.

[5]  I. Matsui Nanoparticles for Electronic Device Applications: A Brief Review , 2005 .

[6]  P. Guyot-Sionnest,et al.  Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals , 1996 .

[7]  C. Dushkin,et al.  The effects of temperature and carboxylic acid ligand on the growth of nanocrystalline CdSe in a hot paraffin matrix , 2006 .

[8]  Stephen G. Hickey,et al.  Single-step synthesis to control the photoluminescence quantum yield and size dispersion of CdSe nanocrystals , 2003 .

[9]  Andrew J deMello,et al.  Microfluidic routes to the controlled production of nanoparticles. , 2002, Chemical communications.

[10]  Shuming Nie,et al.  Quantum dots and multifunctional nanoparticles: new contrast agents for tumor imaging. , 2006, Nanomedicine.

[11]  K. Jensen,et al.  A Continuous‐Flow Microcapillary Reactor for the Preparation of a Size Series of CdSe Nanocrystals , 2003 .

[12]  Johann Michael Köhler,et al.  Formation of isolated and clustered Au nanoparticles in the presence of polyelectrolyte molecules using a flow-through Si chip reactor , 2005 .

[13]  Y. Yamaguchi,et al.  The kinetics of growth of semiconductor nanocrystals in a hot amphiphile matrix. , 2000, Advances in colloid and interface science.

[14]  T. Trindade,et al.  Synthetic studies on II/VI semiconductor quantum dots , 2002 .

[15]  William L. Wilson,et al.  Luminescence properties of CdSe quantum crystallites: Resonance between interior and surface localized states , 1992 .

[16]  Vincent M Rotello,et al.  Functionalized gold nanoparticles for drug delivery. , 2007, Nanomedicine.

[17]  Tim Liedl,et al.  On the development of colloidal nanoparticles towards multifunctional structures and their possible use for biological applications. , 2004, Small.

[18]  G. U. Kulkarni,et al.  Soft chemical approaches to inorganic nanostructures , 2006 .

[19]  Andrew deMello,et al.  Microscale reactors: nanoscale products. , 2004, Lab on a chip.

[20]  Stephanie E. A. Gratton,et al.  Imparting size, shape, and composition control of materials for nanomedicine. , 2006, Chemical Society reviews.

[21]  Andrew J. deMello,et al.  On-line analysis of CdSe nanoparticle formation in a continuous flow chip-based microreactor , 2004 .

[22]  Connie M. Borror,et al.  Response Surface Methodology: A Retrospective and Literature Survey , 2004 .

[23]  Richard A. Mathies,et al.  Size-Controlled Growth of CdSe Nanocrystals in Microfluidic Reactors , 2003 .

[24]  Axel Günther,et al.  A microfabricated gas-liquid segmented flow reactor for high-temperature synthesis: the case of CdSe quantum dots. , 2005, Angewandte Chemie.

[25]  A. deMello,et al.  Accelerated synthesis of titanium oxide nanostructures using microfluidic chips. , 2007, Lab on a chip.

[26]  M. Uehara,et al.  Highly Luminescent CdSe/ZnS Nanocrystals Synthesized Using a Single‐Molecular ZnS Source in a Microfluidic Reactor , 2005 .

[27]  K. Mae,et al.  Production of titania nanoparticles by using a new microreactor assembled with same axle dual pipe , 2004 .

[28]  Hiroyuki Nakamura,et al.  Continuous synthesis of CdSe-ZnS composite nanoparticles in a microfluidic reactor. , 2004, Chemical communications.

[29]  T. Welton,et al.  Precise temperature control in microfluidic devices using Joule heating of ionic liquids. , 2004, Lab on a chip.

[30]  Rustem F Ismagilov,et al.  Multi-step synthesis of nanoparticles performed on millisecond time scale in a microfluidic droplet-based system. , 2004, Lab on a chip.

[31]  M. Radomski,et al.  Nanoparticles: pharmacological and toxicological significance , 2007, British journal of pharmacology.

[32]  Hiroyuki Nakamura,et al.  Preparation of CdSe nanocrystals in a micro-flow-reactor. , 2002, Chemical communications.

[33]  M. A. Malik,et al.  Precursor Routes to Semiconductor Quantum Dots , 2005 .

[34]  E. Boatman,et al.  A safer, easier, faster synthesis for CdSe quantum dot nanocrystals , 2005 .

[35]  A Paul Alivisatos,et al.  High-temperature microfluidic synthesis of CdSe nanocrystals in nanoliter droplets. , 2005, Journal of the American Chemical Society.

[36]  N. Revaprasadu,et al.  Use of metal complexes to synthesize semiconductor nanoparticles , 2006 .

[37]  M. Ohtsu,et al.  Nanophotonics using optical near fields , 2006 .

[38]  C. Kumar,et al.  Microfluidic Synthesis of Cobalt Nanoparticles , 2006 .

[39]  Warren C. W. Chan,et al.  Quantum Dots in Biological and Biomedical Research: Recent Progress and Present Challenges , 2006 .

[40]  Saif A. Khan,et al.  Microfluidic synthesis of colloidal silica. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[41]  Hong Yang,et al.  Synthesis of Silver Nanoparticles in a Continuous Flow Tubular Microreactor , 2004 .

[42]  J. Köhler,et al.  Continuous synthesis of gold nanoparticles in a microreactor. , 2005, Nano letters.

[43]  J. Meinguet Multivariate interpolation at arbitrary points made simple , 1979 .

[44]  Mark Green,et al.  Semiconductor quantum dots as biological imaging agents. , 2004, Angewandte Chemie.

[45]  Andrew J. deMello,et al.  Synthesis of thiol functionalized gold nanoparticles using a continuous flow microfluidic reactor , 2007 .

[46]  T. Nann,et al.  Shape control of II-VI semiconductor nanomaterials. , 2006, Small.