The 42 reducts of the random ordered graph

The random ordered graph is the up to isomorphism unique countable homogeneous linearly ordered graph that embeds all finite linearly ordered graphs. We determine the reducts of the random ordered graph up to first-order interdefinability.

[1]  Michael Pinsker,et al.  Permutations on the Random Permutation , 2015, Electron. J. Comb..

[2]  Vojtech Rödl,et al.  The partite construction and ramsey set systems , 1989, Discret. Math..

[3]  Helen Arnold,et al.  Hitchhiker's guide to the galaxy , 2006, SIGGRAPH '06.

[4]  Michael Pinsker,et al.  Reducts of the random partial order , 2011, 1111.7109.

[5]  Wilfrid Hodges,et al.  A Shorter Model Theory , 1997 .

[6]  Dugald Macpherson,et al.  A survey of homogeneous structures , 2011, Discret. Math..

[7]  Vojtech Rödl,et al.  Ramsey Classes of Set Systems , 1983, J. Comb. Theory, Ser. A.

[8]  Steven Awodey,et al.  Lawvere–Tierney sheaves in Algebraic Set Theory , 2007, The Journal of Symbolic Logic.

[9]  P. Cameron Transitivity of permutation groups on unordered sets , 1976 .

[10]  Markus Junker,et al.  The 116 reducts of (Q, <, a) , 2008, J. Symb. Log..

[11]  Simon Thomas,et al.  Reducts of the random graph , 1991, Journal of Symbolic Logic.

[12]  Leo Harrington,et al.  Models Without Indiscernibles , 1978, J. Symb. Log..

[13]  Michael Pinsker,et al.  Minimal functions on the random graph , 2010 .

[14]  Michael Pinsker,et al.  Reducts of Ramsey structures , 2011, AMS-ASL Joint Special Session.

[15]  P. Cameron,et al.  Oligomorphic permutation groups , 1990 .

[16]  Simon Thomas,et al.  Reducts of Random Hypergraphs , 1996, Ann. Pure Appl. Log..

[17]  Michael Pinsker,et al.  Schaefer's Theorem for Graphs , 2015, J. ACM.

[18]  Michael Pinsker,et al.  Decidability of Definability , 2010, 2011 IEEE 26th Annual Symposium on Logic in Computer Science.

[19]  Douglas Adams,et al.  Hitchhiker's Guide to the Galaxy , 1979 .

[20]  Markus Junker,et al.  The 116 reducts of (ℚ, <, a) , 2008, Journal of Symbolic Logic.