AL-DDoS Attack Detection Optimized with Genetic Algorithms
暂无分享,去创建一个
Application Layer DDoS (AL-DDoS) is a major danger for Internet information services, because these attacks are easily performed and implemented by attackers and are difficult to detect and stop using traditional firewalls. Managing to saturate physically and computationally the information services offered on the network. Directly harming legitimate users, to deal with this type of attacks in the network layer previous approaches propose to use a configurable statistical model and observed that when being optimized in various configuration parameters Using Genetic Algorithms was able to optimize the effectiveness to detect Network Layer DDoS (NL-DDoS), however this method is not enough to stop DDoS at the level of application because this level presents different characteristics, that is why we propose a new method Configurable and optimized for different scenarios of Attacks that effectively detect AL-DDoS.
[1] Dong Seong Kim,et al. Detecting DDoS Attacks Using Dispersible Traffic Matrix and Weighted Moving Average , 2009, ISA.
[2] Dong Seong Kim,et al. Detection of DDoS attacks using optimized traffic matrix , 2012, Comput. Math. Appl..
[3] R. Anitha,et al. Mitigation of Application Traffic DDoS Attacks with Trust and AM Based HMM Models . , 2010 .