Process Analysis for the Evaluation of the Surface Formation and Removal Rate in Lapping

Abstract During the process of lapping, the mechanisms of surface formation and removal rate are decisively influenced by the movement type of the individual grains within the lapping abrasive. Two active movement types can be differentiated. These are the rolling and sliding of the individual lapping grains within the working gap in relation to one of the working partners as well as the passiveness of the grains, whereby varying surface topographies of the workpiece are created by active movement types. These can among others be influenced by some of the adjustable process parameters. However, the most important parameter is the significant grain form. On this basis, a simulation model for the analysis of the surface formation by the motion of grains is described in this paper, also considering collisions and break-ups of grains. It enables the quantitative specification of the individual movement types of the lapping grains under the influence of different process parameters. These are for example the lapping pressure, lapping speed, grain size, grain concentration etc as well as the qualitative estimation of these influences on the processing result.