On the Photon Subtraction-Based Measurement-Device-Independent CV-QKD Protocols

To potentially overcome the practical security loopholes of CV-QKD protocols, in this paper, we propose to use the optimized eight-state measurement-device-independent (MDI) protocol and demonstrate that it can significantly outperform corresponding Gaussian modulation-based MDI and virtual photon subtraction-based MDI CV-QKD protocols in terms of both secret-key rate and achievable transmission distance. Contrary to the common belief that virtual photon subtraction method can extend the distance of MDI CV-QKD protocols, we show that this is not true for fully optimized MDI CV-QKD protocols and realistic system parameters.

[1]  Stefano Pirandola,et al.  Side-channel-free quantum key distribution. , 2011, Physical review letters.

[2]  M. Curty,et al.  Measurement-device-independent quantum key distribution. , 2011, Physical review letters.

[3]  Yongmei Huang,et al.  Satellite-to-ground quantum key distribution , 2017, Nature.

[4]  Samuel L. Braunstein,et al.  Continuous-variable quantum cryptography with an untrusted relay: Detailed security analysis of the symmetric configuration , 2015, 1506.05430.

[5]  Marco Chiani,et al.  Secure Key Throughput of Intermittent Trusted-Relay QKD Protocols , 2018, 2018 IEEE Globecom Workshops (GC Wkshps).

[6]  I. Djordjevic Physical-Layer Security and Quantum Key Distribution , 2019 .

[7]  Jonathan Green,et al.  Quantum Communications via Satellite with Photon Subtraction , 2018, 2018 IEEE Globecom Workshops (GC Wkshps).

[8]  Tao Wang,et al.  Long-distance continuous-variable measurement-device-independent quantum key distribution with discrete modulation , 2018, Physical Review A.

[9]  I. Djordjevic,et al.  Four-Dimensionally Multiplexed Eight-State Continuous-Variable Quantum Key Distribution Over Turbulent Channels , 2017, IEEE Photonics Journal.

[10]  Bingjie Xu,et al.  Continuous-variable measurement-device-independent quantum key distribution with virtual photon subtraction , 2017, 1711.04225.

[11]  L. Liang,et al.  Gaussian-modulated coherent-state measurement-device-independent quantum key distribution , 2013, 1312.5025.

[12]  Miguel Navascués,et al.  Optimality of Gaussian attacks in continuous-variable quantum cryptography. , 2006, Physical review letters.

[13]  Mu-Sheng Jiang,et al.  Wavelength attack on practical continuous-variable quantum-key-distribution system with a heterodyne protocol , 2013 .

[14]  Stefano Pirandola,et al.  High-rate measurement-device-independent quantum cryptography , 2013, Nature Photonics.

[15]  E. Diamanti,et al.  Improvement of continuous-variable quantum key distribution systems by using optical preamplifiers , 2008, 0812.4314.

[16]  Gilles Van Assche,et al.  Quantum cryptography and secret-key distillation , 2006 .

[17]  Ryo Namiki,et al.  Security of quantum cryptography using balanced homodyne detection , 2002, quant-ph/0205191.

[18]  Liang Tian,et al.  Experimental study on discretely modulated continuous-variable quantum key distribution , 2010 .

[19]  P. Grangier,et al.  Reverse reconciliation protocols for quantum cryptography with continuous variables , 2002, quant-ph/0204127.

[20]  Takemi Hasegawa,et al.  The First 0.14-dB/km Loss Optical Fiber and its Impact on Submarine Transmission , 2018, Journal of Lightwave Technology.

[21]  Lajos Hanzo,et al.  Satellite-Based Continuous-Variable Quantum Communications: State-of-the-Art and a Predictive Outlook , 2017, IEEE Communications Surveys & Tutorials.

[22]  Xiaodong Wu,et al.  Continuous-variable measurement-device-independent quantum key distribution via quantum catalysis , 2019, Quantum Information Processing.

[23]  Hao Qin,et al.  Quantum hacking: Saturation attack on practical continuous-variable quantum key distribution , 2015, 1511.01007.

[24]  Charles H. Bennett,et al.  Quantum cryptography: uncertainty in the service of privacy. , 1992, Science.

[25]  I. Djordjevic Optimized-Eight-State CV-QKD Protocol Outperforming Gaussian Modulation Based Protocols , 2019, IEEE Photonics Journal.

[26]  L. Liang,et al.  Local oscillator fluctuation opens a loophole for Eve in practical continuous-variable quantum-key-distribution systems , 2013, 1303.6043.

[27]  A. Becir,et al.  CONTINUOUS-VARIABLE QUANTUM KEY DISTRIBUTION PROTOCOLS WITH EIGHT-STATE DISCRETE MODULATION , 2010, 1006.4216.

[28]  V. Scarani,et al.  The security of practical quantum key distribution , 2008, 0802.4155.

[29]  N. Cerf,et al.  Unconditional optimality of Gaussian attacks against continuous-variable quantum key distribution. , 2006, Physical Review Letters.

[30]  E. Diamanti,et al.  Preventing Calibration Attacks on the Local Oscillator in Continuous-Variable Quantum Key Distribution , 2013, 1304.7024.

[31]  Seth Lloyd,et al.  Gaussian quantum information , 2011, 1110.3234.

[32]  G Leuchs,et al.  Continuous variable quantum cryptography: beating the 3 dB loss limit. , 2002, Physical review letters.

[33]  T.C.Ralph Continuous variable quantum cryptography , 1999, quant-ph/9907073.

[34]  Radim Filip,et al.  Continuous-variable quantum key distribution with a leakage from state preparation , 2017 .

[35]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[36]  Bingjie Xu,et al.  Non-Gaussian postselection and virtual photon subtraction in continuous-variable quantum key distribution , 2016, 1601.02799.