Genome Diversity of Spore-Forming Firmicutes.

Formation of heat-resistant endospores is a specific property of the members of the phylum Firmicutes (low-G+C Gram-positive bacteria). It is found in representatives of four different classes of Firmicutes, Bacilli, Clostridia, Erysipelotrichia, and Negativicutes, which all encode similar sets of core sporulation proteins. Each of these classes also includes non-spore-forming organisms that sometimes belong to the same genus or even species as their spore-forming relatives. This chapter reviews the diversity of the members of phylum Firmicutes, its current taxonomy, and the status of genome-sequencing projects for various subgroups within the phylum. It also discusses the evolution of the Firmicutes from their apparently spore-forming common ancestor and the independent loss of sporulation genes in several different lineages (staphylococci, streptococci, listeria, lactobacilli, ruminococci) in the course of their adaptation to the saprophytic lifestyle in a nutrient-rich environment. It argues that the systematics of Firmicutes is a rapidly developing area of research that benefits from the evolutionary approaches to the ever-increasing amount of genomic and phenotypic data and allows arranging these data into a common framework.

[1]  W. Nicholson,et al.  Extreme Spore UV Resistance of Bacillus pumilus Isolates Obtained from an Ultraclean Spacecraft Assembly Facility , 2004, Microbial Ecology.

[2]  K. Schleifer,et al.  Delimiting the genus Staphylococcus through description of Macrococcus caseolyticus gen. nov., comb. nov. and Macrococcus equipercicus sp. nov., and Macrococcus bovicus sp. no. and Macrococcus carouselicus sp. nov. , 1998, International journal of systematic bacteriology.

[3]  C. Woese,et al.  Bacterial evolution , 1987, Microbiological reviews.

[4]  T. Cavalier-smith,et al.  Rooting the tree of life by transition analyses , 2006, Biology Direct.

[5]  T. Macke,et al.  A phylogenetic definition of the major eubacterial taxa. , 1985, Systematic and applied microbiology.

[6]  R. Gupta,et al.  Phylogenetic analysis of mycoplasmas based on Hsp70 sequences: cloning of the dnaK (hsp70) gene region of Mycoplasma capricolum. , 1997, International journal of systematic bacteriology.

[7]  S. Erlandsen,et al.  Evidence for a complex life cycle and endospore formation in the attached, filamentous, segmented bacterium from murine ileum , 1976, Journal of bacteriology.

[8]  L. Klobutcher,et al.  The Bacillus subtilis spore coat provides "eat resistance" during phagocytic predation by the protozoan Tetrahymena thermophila. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[9]  Radhey S. Gupta,et al.  The Natural Evolutionary Relationships among Prokaryotes , 2000, Critical reviews in microbiology.

[10]  P. Vandamme,et al.  Anaerostipes butyraticus sp. nov., an anaerobic, butyrate-producing bacterium from Clostridium cluster XIVa isolated from broiler chicken caecal content, and emended description of the genus Anaerostipes. , 2010, International journal of systematic and evolutionary microbiology.

[11]  A. Beynen,et al.  Intestinal, segmented, filamentous bacteria in a wide range of vertebrate species , 1993, Laboratory animals.

[12]  Katherine H. Huang,et al.  Comparative genomics of the lactic acid bacteria , 2006, Proceedings of the National Academy of Sciences.

[13]  P. Dürre,et al.  Clostridium ljungdahlii represents a microbial production platform based on syngas , 2010, Proceedings of the National Academy of Sciences.

[14]  P. Sneath,et al.  Approved lists of bacterial names. , 1980, The Medical journal of Australia.

[15]  Tatiana A. Tatusova,et al.  NCBI Reference Sequences (RefSeq): current status, new features and genome annotation policy , 2011, Nucleic Acids Res..

[16]  J. C. Thrash,et al.  Evidence for Direct Electron Transfer by a Gram-Positive Bacterium Isolated from a Microbial Fuel Cell , 2011, Applied and Environmental Microbiology.

[17]  Jan Mrázek,et al.  Simple sequence repeats in prokaryotic genomes , 2007, Proceedings of the National Academy of Sciences.

[18]  Robert M. Kelly,et al.  Complete Genome Sequences for the Anaerobic, Extremely Thermophilic Plant Biomass-Degrading Bacteria Caldicellulosiruptor hydrothermalis, Caldicellulosiruptor kristjanssonii, Caldicellulosiruptor kronotskyensis, Caldicellulosiruptor owensensis, and Caldicellulosiruptor lactoaceticus , 2011, Journal of bacteriology.

[19]  Eleftherios T. Papoutsakis,et al.  A comparative genomic view of clostridial sporulation and physiology , 2005, Nature Reviews Microbiology.

[20]  A. Lozniewski,et al.  Multilocus analysis reveals diversity in the genus Tissierella: description of Tissierella carlieri sp. nov. in the new class Tissierellia classis nov. , 2014, Systematic and applied microbiology.

[21]  Lynne A. Goodwin,et al.  Complete genome sequence of the thermophilic, hydrogen-oxidizing Bacillus tusciae type strain (T2T) and reclassification in the new genus, Kyrpidia gen. nov. as Kyrpidia tusciae comb. nov. and emendation of the family Alicyclobacillaceae da Costa and Rainey, 2010. , 2011, Standards in genomic sciences.

[22]  Draft Genome Sequence of Virgibacillus halodenitrificans 1806 , 2012, Journal of bacteriology.

[23]  B. Ollivier,et al.  Characterization of Defluviitalea saccharophila gen. nov., sp. nov., a thermophilic bacterium isolated from an upflow anaerobic filter treating abattoir wastewaters, and proposal of Defluviitaleaceae fam. nov. , 2012, International journal of systematic and evolutionary microbiology.

[24]  Lawrence E. Page,et al.  The Genome of Heliobacterium modesticaldum, a Phototrophic Representative of the Firmicutes Containing the Simplest Photosynthetic Apparatus � † , 2022 .

[25]  Natalya Yutin,et al.  Phylogenomics of Prokaryotic Ribosomal Proteins , 2012, Genome Biology.

[26]  Wolfgang Ludwig,et al.  Revised road map to the phylum Firmicutes , 2015 .

[27]  D. Vitkup,et al.  Hierarchical Evolution of the Bacterial Sporulation Network , 2010, Current Biology.

[28]  E. Bonch‐Osmolovskaya,et al.  Thermincola ferriacetica sp. nov., a new anaerobic, thermophilic, facultatively chemolithoautotrophic bacterium capable of dissimilatory Fe(III) reduction , 2006, Extremophiles.

[29]  D. Klaus,et al.  Space Microbiology , 2010, Microbiology and Molecular Biology Reviews.

[30]  M. Starr,et al.  Pasteuria thornei sp. nov. and Pasteuria penetrans sensu stricto emend., mycelial and endospore-forming bacteria parasitic, respectively, on plant-parasitic nematodes of the genera Pratylenchus and Meloidogyne. , 1988, Annales de l'Institut Pasteur. Microbiology.

[31]  Songnian Hu,et al.  Complete Genome Analysis of Sulfobacillus acidophilus Strain TPY, Isolated from a Hydrothermal Vent in the Pacific Ocean , 2011, Journal of bacteriology.

[32]  T. A. Krulwich,et al.  Growth and bioenergetics of alkaliphilic Bacillus firmus OF4 in continuous culture at high pH , 1994, Journal of bacteriology.

[33]  Eoin L. Brodie,et al.  Greengenes, a Chimera-Checked 16S rRNA Gene Database and Workbench Compatible with ARB , 2006, Applied and Environmental Microbiology.

[34]  Michael Y. Galperin Structural Classification of Bacterial Response Regulators: Diversity of Output Domains and Domain Combinations , 2006, Journal of bacteriology.

[35]  I-Min A. Chen,et al.  The Genomes OnLine Database (GOLD) v.4: status of genomic and metagenomic projects and their associated metadata , 2011, Nucleic Acids Res..

[36]  Vineet K. Sharma,et al.  Complete genome sequences of rat and mouse segmented filamentous bacteria, a potent inducer of th17 cell differentiation. , 2011, Cell host & microbe.

[37]  David A Rasko,et al.  Genomics of the Bacillus cereus group of organisms. , 2005, FEMS microbiology reviews.

[38]  Lynne A. Goodwin,et al.  Complete Genome Sequence of the Anaerobic, Halophilic Alkalithermophile Natranaerobius thermophilus JW/NM-WN-LF , 2011, Journal of bacteriology.

[39]  K. Schleifer,et al.  Taxonomic outline of the phylum Firmicutes , 2009 .

[40]  M Weizenegger,et al.  Bacterial phylogeny based on comparative sequence analysis (review) , 1998, Electrophoresis.

[41]  Tetsuya Hayashi,et al.  The Genome of Erysipelothrix rhusiopathiae, the Causative Agent of Swine Erysipelas, Reveals New Insights into the Evolution of Firmicutes and the Organism's Intracellular Adaptations , 2011, Journal of bacteriology.

[42]  F. Robb,et al.  Thermosinus carboxydivorans gen. nov., sp. nov., a new anaerobic, thermophilic, carbon-monoxide-oxidizing, hydrogenogenic bacterium from a hot pool of Yellowstone National Park. , 2004, International journal of systematic and evolutionary microbiology.

[43]  B. Snel,et al.  Toward Automatic Reconstruction of a Highly Resolved Tree of Life , 2006, Science.

[44]  Natalia N. Ivanova,et al.  Insights into the phylogeny and coding potential of microbial dark matter , 2013, Nature.

[45]  Pelin Yilmaz,et al.  The SILVA ribosomal RNA gene database project: improved data processing and web-based tools , 2012, Nucleic Acids Res..

[46]  H. Takami,et al.  Oceanobacillus iheyensis gen. nov., sp. nov., a deep-sea extremely halotolerant and alkaliphilic species isolated from a depth of 1050 m on the Iheya Ridge. , 2001, FEMS microbiology letters.

[47]  Jeffrey M. Skerker,et al.  Draft Genome Sequence of Pelosinus fermentans JBW45, Isolated during In Situ Stimulation for Cr(VI) Reduction , 2012, Journal of Bacteriology.

[48]  C. Huttenhower,et al.  The genome of th17 cell-inducing segmented filamentous bacteria reveals extensive auxotrophy and adaptations to the intestinal environment. , 2011, Cell host & microbe.

[49]  B. Patel,et al.  Isolation and Characterization of Sporobacter termitidis gen. nov., sp. nov., from the Digestive Tract of the Wood-Feeding Termite Nasutitermes lujae , 1996 .

[50]  G. Gottschalk,et al.  Sporomusa, a new genus of gram-negative anaerobic bacteria including Sporomusa sphaeroides spec. nov. and Sporomusa ovata spec. nov. , 1984, Archives of Microbiology.

[51]  S. Karlin,et al.  Comparative DNA analysis across diverse genomes. , 1998, Annual review of genetics.

[52]  Radhey S. Gupta Protein Phylogenies and Signature Sequences: A Reappraisal of Evolutionary Relationships among Archaebacteria, Eubacteria, and Eukaryotes , 1998, Microbiology and Molecular Biology Reviews.

[53]  M. Hattori,et al.  The Lifestyle of the Segmented Filamentous Bacterium: A Non-Culturable Gut-Associated Immunostimulating Microbe Inferred by Whole-Genome Sequencing , 2011, DNA research : an international journal for rapid publication of reports on genes and genomes.

[54]  F. Priest,et al.  Phenetic diversity of alkaliphilic Bacillus strains: proposal for nine new species , 1995 .

[55]  G. Gottschalk,et al.  First Insights into the Genome of the Gram-Negative, Endospore-Forming Organism Sporomusa ovata Strain H1 DSM 2662 , 2013, Genome Announcements.

[56]  E. Koonin,et al.  Evolutionary Genomics of Lactic Acid Bacteria , 2006, Journal of bacteriology.

[57]  B. Ahring,et al.  Thermoanaerobacter mathranii sp. nov., an ethanol-producing, extremely thermophilic anaerobic bacterium from a hot spring in Iceland , 1997, Archives of Microbiology.

[58]  J. Wiegel,et al.  Caldicoprobacter oshimai gen. nov., sp. nov., an anaerobic, xylanolytic, extremely thermophilic bacterium isolated from sheep faeces, and proposal of Caldicoprobacteraceae fam. nov. , 2010, International journal of systematic and evolutionary microbiology.

[59]  K. Tang,et al.  Energy metabolism of Heliobacterium modesticaldum during phototrophic and chemotrophic growth , 2010, BMC Microbiology.

[60]  Complete Genome Sequence of the Electricity-Producing “Thermincola potens” Strain JR , 2010, Journal of bacteriology.

[61]  Dylan Chivian,et al.  Environmental Genomics Reveals a Single-Species Ecosystem Deep Within Earth , 2008, Science.

[62]  P. Stragier A Gene Odyssey: Exploring the Genomes of Endospore-Forming Bacteria , 2002 .

[63]  M. Kane,et al.  Acetonema longum gen.nov.sp.nov., an H2/CO2 acetogenic bacterium from the termite, Pterotermes occidentis , 1991, Archives of Microbiology.

[64]  W. Whitman,et al.  Novel chemolithotrophic, thermophilic, anaerobic bacteria Thermolithobacter ferrireducens gen. nov., sp. nov. and Thermolithobacter carboxydivorans sp. nov. , 2006, Extremophiles.

[65]  M. Popoff,et al.  Sporomusa paucivorans sp. nov., a methylotrophic bacterium that forms acetic acid from hydrogen and carbon dioxide , 1987 .

[66]  E. Stackebrandt,et al.  Erysipelothrix inopinata sp. nov., isolated in the course of sterile filtration of vegetable peptone broth, and description of Erysipelotrichaceae fam. nov. , 2004, International journal of systematic and evolutionary microbiology.

[67]  H. L. Klaasen,et al.  Intestinal, segmented, filamentous bacteria. , 1992, FEMS microbiology reviews.

[68]  C. Woese Default taxonomy: Ernst Mayr's view of the microbial world. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[69]  I-Min A. Chen,et al.  The Genomes On Line Database (GOLD) in 2007: status of genomic and metagenomic projects and their associated metadata , 2007, Nucleic Acids Res..

[70]  O. Kandler,et al.  Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[71]  W. Ludwig,et al.  Pelospora glutarica gen. nov., sp. nov., a glutarate-fermenting, strictly anaerobic, spore-forming bacterium. , 2000, International journal of systematic and evolutionary microbiology.

[72]  James R. Cole,et al.  The Ribosomal Database Project: improved alignments and new tools for rRNA analysis , 2008, Nucleic Acids Res..

[73]  J. Wiegel,et al.  Natranaerobius thermophilus gen. nov., sp. nov., a halophilic, alkalithermophilic bacterium from soda lakes of the Wadi An Natrun, Egypt, and proposal of Natranaerobiaceae fam. nov. and Natranaerobiales ord. nov. , 2007, International journal of systematic and evolutionary microbiology.

[74]  B. Gay,et al.  Negativicoccus succinicivorans gen. nov., sp. nov., isolated from human clinical samples, emended description of the family Veillonellaceae and description of Negativicutes classis nov., Selenomonadales ord. nov. and Acidaminococcaceae fam. nov. in the bacterial phylum Firmicutes. , 2010, International journal of systematic and evolutionary microbiology.

[75]  M. Madigan,et al.  Taxonomy, phylogeny, and ecology of the heliobacteria , 2010, Photosynthesis Research.

[76]  E. Stackebrandt,et al.  Description of Caldicellulosiruptor saccharolyticus gen. nov., sp. nov: an obligately anaerobic, extremely thermophilic, cellulolytic bacterium. , 1994, FEMS microbiology letters.

[77]  Michael Y. Galperin,et al.  Encapsulated in silica: genome, proteome and physiology of the thermophilic bacterium Anoxybacillus flavithermus WK1 , 2008, Genome Biology.

[78]  Michael Y. Galperin,et al.  Genomic determinants of sporulation in Bacilli and Clostridia: towards the minimal set of sporulation-specific genes , 2012, Environmental microbiology.

[79]  Grant J. Jensen,et al.  Peptidoglycan Remodeling and Conversion of an Inner Membrane into an Outer Membrane during Sporulation , 2011, Cell.

[80]  M. Collins,et al.  Comparison of 16S rRNA sequences of segmented filamentous bacteria isolated from mice, rats, and chickens and proposal of "Candidatus Arthromitus". , 1995, International journal of systematic bacteriology.

[81]  A. Demain,et al.  Cellulase, Clostridia, and Ethanol , 2005, Microbiology and Molecular Biology Reviews.

[82]  N. Grishin,et al.  Genome trees constructed using five different approaches suggest new major bacterial clades , 2001, BMC Evolutionary Biology.

[83]  Lynne A. Goodwin,et al.  Complete Genome Sequence of Clostridium clariflavum DSM 19732 , 2012, Standards in genomic sciences.

[84]  T. D. Brock,et al.  Bacillus acidocaldarius sp.nov., an Acidophilic Thermophilic Spore-forming Bacterium , 1971 .

[85]  F. Rodríguez-Valera,et al.  Evolutionary relationships of Fusobacterium nucleatum based on phylogenetic analysis and comparative genomics , 2004, BMC Evolutionary Biology.

[86]  T. Dandekar,et al.  Phylogeny of Firmicutes with special reference to Mycoplasma (Mollicutes) as inferred from phosphoglycerate kinase amino acid sequence data. , 2004, International journal of systematic and evolutionary microbiology.

[87]  R. Overbeek,et al.  The winds of (evolutionary) change: breathing new life into microbiology. , 1996, Journal of bacteriology.

[88]  T. Oh,et al.  Transfer of Bacillus halodenitrificans Denariaz et al. 1989 to the genus Virgibacillus as Virgibacillus halodenitrificans comb. nov. , 2004, International journal of systematic and evolutionary microbiology.

[89]  Manfred Auer,et al.  Surface multiheme c-type cytochromes from Thermincola potens and implications for respiratory metal reduction by Gram-positive bacteria , 2012, Proceedings of the National Academy of Sciences.

[90]  B. Tindall,et al.  A re-evaluation of the taxonomy of the genus Anaerovibrio, with the reclassification of Anaerovibrio glycerini as Anaerosinus glycerini gen. nov., comb. nov., and Anaerovibrio burkinabensis as Anaeroarcus burkinensis [corrig.] gen. nov., comb. nov. , 1999, International journal of systematic bacteriology.

[91]  Michael Y. Galperin,et al.  Sequence analysis of GerM and SpoVS, uncharacterized bacterial ‘sporulation’ proteins with widespread phylogenetic distribution , 2008, Bioinform..

[92]  A. Nakamura,et al.  Tuberibacillus calidus gen. nov., sp. nov., isolated from a compost pile and reclassification of Bacillus naganoensis Tomimura et al. 1990 as Pullulanibacillus naganoensis gen. nov., comb. nov. and Bacillus laevolacticus Andersch et al. 1994 as Sporolactobacillus laevolacticus comb. nov. , 2006, International journal of systematic and evolutionary microbiology.

[93]  G. Weinstock,et al.  Paradoxical DNA Repair and Peroxide Resistance Gene Conservation in Bacillus pumilus SAFR-032 , 2007, PloS one.

[94]  H. Klenk,et al.  Desmospora activa gen. nov., sp. nov., a thermoactinomycete isolated from sputum of a patient with suspected pulmonary tuberculosis, and emended description of the family Thermoactinomycetaceae Matsuo et al. 2006. , 2009, International journal of systematic and evolutionary microbiology.

[95]  Natalia N. Ivanova,et al.  A phylogeny-driven genomic encyclopaedia of Bacteria and Archaea , 2009, Nature.

[96]  N. Kyrpides,et al.  Complete genome sequence of the moderately thermophilic mineral-sulfide-oxidizing firmicute Sulfobacillus acidophilus type strain (NAL T ) , 2012 .

[97]  Robert G Beiko,et al.  Telling the whole story in a 10,000-genome world , 2011, Biology Direct.

[98]  E. Bonch‐Osmolovskaya,et al.  Caldicellulosiruptor kronotskyensis sp. nov. and Caldicellulosiruptor hydrothermalis sp. nov., two extremely thermophilic, cellulolytic, anaerobic bacteria from Kamchatka thermal springs. , 2008, International journal of systematic and evolutionary microbiology.

[99]  M. Wagner,et al.  The Planctomycetes, Verrucomicrobia, Chlamydiae and sister phyla comprise a superphylum with biotechnological and medical relevance. , 2006, Current opinion in biotechnology.

[100]  M. Collins,et al.  Phylogenetic interrelationships of round-spore-forming bacilli containing cell walls based on lysine and the non-spore-forming genera Caryophanon, Exiguobacterium, Kurthia, and Planococcus. , 1994, International journal of systematic bacteriology.

[101]  Iain C Sutcliffe,et al.  A phylum level perspective on bacterial cell envelope architecture. , 2010, Trends in microbiology.

[102]  P. Lawson,et al.  The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. , 1994, International journal of systematic bacteriology.

[103]  Scott Federhen,et al.  The NCBI Taxonomy database , 2011, Nucleic Acids Res..

[104]  P. Setlow I will survive: DNA protection in bacterial spores. , 2007, Trends in microbiology.

[105]  R. Huber,et al.  Formation of ammonium from nitrate during chemolithoautotrophic growth of the extremely thermophilic bacterium ammonifex degensii gen. nov. sp. nov. , 1996, Systematic and applied microbiology.

[106]  Luke E. Ulrich,et al.  Life in Hot Carbon Monoxide: The Complete Genome Sequence of Carboxydothermus hydrogenoformans Z-2901 , 2005, PLoS genetics.

[107]  Trond E. Ellingsen,et al.  Genome Sequence of Thermotolerant Bacillus methanolicus: Features and Regulation Related to Methylotrophy and Production of l-Lysine and l-Glutamate from Methanol , 2012, Applied and Environmental Microbiology.

[108]  F. Bisby,et al.  Species 2000 & ITIS Catalogue of Life , 2010 .

[109]  T. Cavalier-smith,et al.  The neomuran origin of archaebacteria, the negibacterial root of the universal tree and bacterial megaclassification. , 2002, International journal of systematic and evolutionary microbiology.

[110]  Raul Munoz,et al.  Release LTPs104 of the All-Species Living Tree. , 2011, Systematic and applied microbiology.

[111]  Yan Zhao,et al.  Phylogenetic positions of 'Candidatus Phytoplasma asteris' and Spiroplasma kunkelii as inferred from multiple sets of concatenated core housekeeping proteins. , 2005, International Journal of Systematic and Evolutionary Microbiology.

[112]  Ikuo Uchiyama,et al.  Thermoadaptation trait revealed by the genome sequence of thermophilic Geobacillus kaustophilus. , 2004, Nucleic acids research.

[113]  J. Wiegel,et al.  Sporulation genes in members of the low G+C Gram-type-positive phylogenetic branch (Firmicutes) , 2004, Archives of Microbiology.

[114]  Michael Y. Galperin,et al.  A genomic update on clostridial phylogeny: Gram-negative spore formers and other misplaced clostridia. , 2013, Environmental microbiology.

[115]  Eric P. Nawrocki,et al.  An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea , 2011, The ISME Journal.

[116]  D. M. Ivey,et al.  Genome of alkaliphilic Bacillus pseudofirmus OF4 reveals adaptations that support the ability to grow in an external pH range from 7.5 to 11.4. , 2011, Environmental microbiology.

[117]  Jacqueline A. Servin,et al.  Genome beginnings: rooting the tree of life , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[118]  Jizhong Zhou,et al.  Alkaline Anaerobic Respiration: Isolation and Characterization of a Novel Alkaliphilic and Metal-Reducing Bacterium , 2004, Applied and Environmental Microbiology.

[119]  Courtney M. Johnson,et al.  Draft Genome Sequences for Two Metal-Reducing Pelosinus fermentans Strains Isolated from a Cr(VI)-Contaminated Site and for Type Strain R7 , 2012, Journal of bacteriology.

[120]  B. Ahring,et al.  Caldicellulosiruptor kristjanssonii sp. nov., a cellulolytic, extremely thermophilic, anaerobic bacterium. , 1999, International journal of systematic bacteriology.

[121]  S Karlin,et al.  Compositional biases of bacterial genomes and evolutionary implications , 1997, Journal of bacteriology.

[122]  Renato J. Alves,et al.  A Genomic Signature and the Identification of New Sporulation Genes , 2013, Journal of bacteriology.

[123]  C. Spröer,et al.  Two novel psychrotolerant species, Bacillus psychrotolerans sp. nov. and Bacillus psychrodurans sp. nov., which contain ornithine in their cell walls. , 2002, International journal of systematic and evolutionary microbiology.

[124]  E. Bonch‐Osmolovskaya,et al.  Thermincola carboxydiphila gen. nov., sp. nov., a novel anaerobic, carboxydotrophic, hydrogenogenic bacterium from a hot spring of the Lake Baikal area. , 2005, International journal of systematic and evolutionary microbiology.

[125]  Lynne A. Goodwin,et al.  Complete genome sequence of the moderately thermophilic mineral-sulfide-oxidizing firmicute Sulfobacillus acidophilus type strain (NALT) , 2012, Standards in genomic sciences.

[126]  F. A. Perrot,et al.  Comparison of selected characteristics of Sulfobacillus species and review of their occurrence in acidic and bioleaching environments , 2008 .

[127]  T. Chakrabarti,et al.  Psychrobacillus gen. nov. and proposal for reclassification of Bacillus insolitus Larkin & Stokes, 1967, B. psychrotolerans Abd-El Rahman et al., 2002 and B. psychrodurans Abd-El Rahman et al., 2002 as Psychrobacillus insolitus comb. nov., Psychrobacillus psychrotolerans comb. nov. and Psychrobacill , 2010, Systematic and applied microbiology.

[128]  T. Junier,et al.  Stage 0 sporulation gene A as a molecular marker to study diversity of endospore-forming Firmicutes. , 2013, Environmental microbiology reports.

[129]  D. Popham,et al.  EtfA catalyses the formation of dipicolinic acid in Clostridium perfringens , 2010, Molecular microbiology.

[130]  K. Schleifer,et al.  Bacterial phylogeny based on 16S and 23S rRNA sequence analysis. , 1994, FEMS microbiology reviews.

[131]  Y. Nakamura,et al.  Complete genome sequence of the alkaliphilic bacterium Bacillus halodurans and genomic sequence comparison with Bacillus subtilis. , 2000, Nucleic acids research.

[132]  Olga Zhaxybayeva,et al.  On the chimeric nature, thermophilic origin, and phylogenetic placement of the Thermotogales , 2009, Proceedings of the National Academy of Sciences.

[133]  S. Scherer,et al.  Bacillus weihenstephanensis sp. nov. is a new psychrotolerant species of the Bacillus cereus group. , 1998, International journal of systematic bacteriology.

[134]  H. Takami,et al.  Genome sequence of Oceanobacillus iheyensis isolated from the Iheya Ridge and its unexpected adaptive capabilities to extreme environments. , 2002, Nucleic acids research.

[135]  G. Fox,et al.  Comparative sequence analyses on the 16S rRNA (rDNA) of Bacillus acidocaldarius, Bacillus acidoterrestris, and Bacillus cycloheptanicus and proposal for creation of a new genus, Alicyclobacillus gen. nov. , 1992, International journal of systematic bacteriology.

[136]  James R. Cole,et al.  Taxonomic Outline of the Bacteria and Archaea: Formerly the Taxonomic Outline of the Prokaryotes , 2007 .