Terahertz and infrared spectroscopy of gated large-area graphene.

We have fabricated a centimeter-size single-layer graphene device with a gate electrode, which can modulate the transmission of terahertz and infrared waves. Using time-domain terahertz spectroscopy and Fourier-transform infrared spectroscopy in a wide frequency range (10-10 000 cm(-1)), we measured the dynamic conductivity change induced by electrical gating and thermal annealing. Both methods were able to effectively tune the Fermi energy, E(F), which in turn modified the Drude-like intraband absorption in the terahertz as well as the "2E(F) onset" for interband absorption in the mid-infrared. These results not only provide fundamental insight into the electromagnetic response of Dirac fermions in graphene but also demonstrate the key functionalities of large-area graphene devices that are desired for components in terahertz and infrared optoelectronics.

[1]  M. Portnoi,et al.  Generation of terahertz radiation by hot electrons in carbon nanotubes. , 2007, Nano letters.

[2]  T. Ando,et al.  Dynamical Conductivity and Zero-Mode Anomaly in Honeycomb Lattices , 2002 .

[3]  E. Mishchenko Effect of electron-electron interactions on the conductivity of clean graphene. , 2006, Physical review letters.

[4]  Zheng Yan,et al.  Growth of graphene from solid carbon sources , 2010, Nature.

[5]  V P Gusynin,et al.  Unusual microwave response of dirac quasiparticles in graphene. , 2006, Physical review letters.

[6]  M. C. Martin,et al.  Broadband electromagnetic response and ultrafast dynamics of few-layer epitaxial graphene , 2009, 0903.0577.

[7]  G. Grüner Millimeter and Submillimeter Wave Spectroscopy of Solids , 1998 .

[8]  J. Schmalian,et al.  Femtosecond population inversion and stimulated emission of dense Dirac fermions in graphene. , 2011, Physical review letters.

[9]  Landauer conductance and twisted boundary conditions for Dirac fermions , 2006, cond-mat/0610598.

[10]  M. Potemski,et al.  Dirac electronic states in graphene systems: optical spectroscopy studies , 2010, 1004.2949.

[11]  D. Rickel,et al.  Circular polarization dependent cyclotron resonance in large-area graphene in ultrahigh magnetic fields , 2011, 1110.4522.

[12]  S. A. Mikhailov,et al.  Non-linear graphene optics for terahertz applications , 2008, Microelectron. J..

[13]  J. Orenstein,et al.  Terahertz time-domain spectroscopy , 1998 .

[14]  P. Kim,et al.  Electric field effect tuning of electron-phonon coupling in graphene. , 2006, Physical review letters.

[15]  S. A. Mikhailov,et al.  Non-linear electromagnetic response of graphene , 2007, 0704.1909.

[16]  Feng Wang,et al.  Gate-Variable Optical Transitions in Graphene , 2008, Science.

[17]  E. Williams,et al.  Atomic structure of graphene on SiO2. , 2007, Nano letters.

[18]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[19]  Masayoshi Tonouchi,et al.  Broadband terahertz polarizers with ideal performance based on aligned carbon nanotube stacks. , 2012, Nano letters.

[20]  H. Bechtel,et al.  Drude Conductivity of Dirac Fermions in Graphene , 2010, 1007.4623.

[21]  M. Shur,et al.  Graphene Tunneling Transit-Time Terahertz Oscillator Based on Electrically Induced p–i–n Junction , 2009 .

[22]  N. Peres,et al.  Fine Structure Constant Defines Visual Transparency of Graphene , 2008, Science.

[23]  N. M. R. Peres,et al.  Electronic properties of disordered two-dimensional carbon , 2006 .

[24]  K. Novoselov,et al.  Breakdown of the adiabatic Born-Oppenheimer approximation in graphene. , 2007, Nature materials.

[25]  L. Falkovsky,et al.  Optical far-infrared properties of a graphene monolayer and multilayer , 2007, 0707.1386.

[26]  F. T. Vasko,et al.  Nonequilibrium carriers in intrinsic graphene under interband photoexcitation , 2008, 0807.1590.

[27]  V. Ryzhii,et al.  Negative dynamic conductivity of graphene with optical pumping , 2007 .

[28]  Masayoshi Tonouchi,et al.  Carbon nanotube terahertz polarizer. , 2009, Nano letters.

[29]  Seung Jin Chae,et al.  Gate-controlled nonlinear conductivity of Dirac fermion in graphene field-effect transistors measured by terahertz time-domain spectroscopy. , 2012, Nano letters.

[30]  James M. Tour,et al.  Growth of graphene from food, insects, and waste. , 2011, ACS nano.

[31]  S. Mikhailov,et al.  Nonlinear electromagnetic response of graphene: frequency multiplication and the self-consistent-field effects , 2008, Journal of physics. Condensed matter : an Institute of Physics journal.

[32]  A. Bachtold,et al.  The environment of graphene probed by electrostatic force microscopy , 2008, 0803.2032.

[33]  O. Vafek,et al.  Coulomb interaction, ripples, and the minimal conductivity of graphene. , 2007, Physical review letters.

[34]  P. Kim,et al.  Dirac charge dynamics in graphene by infrared spectroscopy , 2008, 0807.3780.

[35]  P. Ingenhoven,et al.  Features due to spin-orbit coupling in the optical conductivity of single-layer graphene , 2009, 0911.0754.

[36]  Yang Wu,et al.  Measurement of the optical conductivity of graphene. , 2008, Physical review letters.

[37]  S. Mikhailov,et al.  New electromagnetic mode in graphene. , 2007, Physical review letters.

[38]  R. Ruoff,et al.  Broadband microwave and time-domain terahertz spectroscopy of chemical vapor deposition grown graphene , 2011, 1106.2472.

[39]  Wenjuan Zhu,et al.  Infrared spectroscopy of wafer-scale graphene. , 2011, ACS nano.

[40]  D. Jena,et al.  Broadband graphene terahertz modulators enabled by intraband transitions , 2012, Nature Communications.

[41]  A. MacDonald,et al.  Origin of universal optical conductivity and optical stacking sequence identification in multilayer graphene. , 2009, Physical review letters.

[42]  D. Sheehy,et al.  Quantum critical scaling in graphene. , 2007, Physical review letters.