Finite element beam propagation method for anisotropic optical waveguides

A finite element beam propagation method (BPM) for anisotropic optical waveguides is newly formulated. In order to treat a wide-angle beam propagation, a Pade approximant operator is employed and to avoid nonphysical reflection from computational window edges, a transparent boundary condition is extended to anisotropic materials. To show the validity and usefulness of this approach, the numerical results for an anisotropic planar waveguide and a magnetooptic channel waveguide are presented.

[1]  G. R. Hadley,et al.  Transparent boundary condition for beam propagation. , 1991, Optics letters.

[2]  A. Erdmann,et al.  Beam-propagation in magnetooptic waveguides , 1995 .

[3]  M. Koshiba,et al.  Approximate Scalar Finite-Element Analysis of Anisotropic Optical Waveguides with Off-Diagonal Elements in a Permittivity Tensor , 1984 .

[4]  Akihiro Maruta,et al.  Transparent boundary for the finite-element beam-propagation method. , 1993 .

[5]  R. E. Scotti,et al.  Etch‐tuned ridged waveguide magneto‐optic isolator , 1990 .

[6]  Tetsuya Mizumoto,et al.  Modified Numerical Technique for Beam Propagation Method Based on the Galerkin's Technique , 1994 .

[7]  Hugo E. Hernandez-Figueroa,et al.  Simple nonparaxial beam-propagation method for integrated optics , 1994 .

[8]  L Thylen,et al.  Beam propagation method in anisotropic media. , 1982, Applied optics.

[9]  J. Liu,et al.  Vectorial beam propagation method , 1992 .

[10]  Frank Schmidt,et al.  An adaptive approach to the numerical solution of Fresnel's wave equation , 1993 .

[11]  M. Feit,et al.  Beam propagation in uniaxial anisotropic media , 1983 .

[12]  Masanori Koshiba,et al.  Finite element beam propagation method for three-dimensional optical waveguide structures , 1997 .

[13]  M. Koshiba,et al.  A wide-angle finite-element beam propagation method , 1996, IEEE Photonics Technology Letters.

[14]  Masanori Koshiba,et al.  Split-step finite-element method applied to nonlinear integrated optics , 1990 .

[15]  J. B. Davies,et al.  Finite element/finite difference propagation algorithm for integrated optical device , 1989 .

[16]  Yahei Koyamada,et al.  Normal‐mode analysis of anisotropic and gyrotropic thin‐film waveguides for integrated optics , 1972 .

[17]  G. R. Hadley,et al.  Wide-angle beam propagation using Pade approximant operators. , 1992, Optics letters.

[18]  J. Chrostowski,et al.  A full-vectorial beam propagation method for anisotropic waveguides , 1994 .

[19]  H.-P. Nolting,et al.  Results of benchmark tests for different numerical BPM algorithms , 1995 .

[20]  Masanori Koshiba,et al.  A finite element beam propagation method for strongly guiding and longitudinally varying optical waveguides , 1996 .