[C ii] 158 μm LUMINOSITIES AND STAR FORMATION RATE IN DUSTY STARBURSTS AND ACTIVE GALACTIC NUCLEI

Results are presented for [C ii] 158 μm line fluxes observed with the Herschel PACS instrument in 112 sources with both starburst and active galactic nucleus (AGN) classifications, of which 102 sources have confident detections. Results are compared with mid-infrared spectra from the Spitzer Infrared Spectrometer and with Lir from IRAS fluxes; AGN/starburst classifications are determined from equivalent width of the 6.2 μm polycyclic aromatic hydrocarbon (PAH) feature. It is found that the [C ii] line flux correlates closely with the flux of the 11.3 μm PAH feature independent of AGN/starburst classification, log [f([C ii] 158 μm)/f(11.3 μm PAH)] = −0.22 ± 0.25. It is concluded that the [C ii] line flux measures the photodissociation region associated with starbursts in the same fashion as the PAH feature. A calibration of star formation rate (SFR) for the starburst component in any source having [C ii] is derived comparing [C ii] luminosity L([C ii]) to Lir with the result that log SFR = log L([C ii)]) − 7.08 ± 0.3, for SFR in M☉ yr−1 and L([C ii]) in L☉. The decreasing ratio of L([C ii]) to Lir in more luminous sources (the “[C ii] deficit”) is shown to be a consequence of the dominant contribution to Lir arising from a luminous AGN component because the sources with the largest Lir and smallest L([C ii])/Lir are AGNs.

[1]  P. Goldsmith,et al.  [CII] 158 micron line detection of the warm ionized medium in the Scutum--Crux spiral arm tangency , 2012, 1205.0550.

[2]  B. Groves,et al.  A STUDY OF HEATING AND COOLING OF THE ISM IN NGC 1097 WITH HERSCHEL-PACS AND SPITZER-IRS , 2012, 1204.0554.

[3]  Liverpool John Moores University,et al.  DETECTION OF ATOMIC CARBON [C ii] 158 μm AND DUST EMISSION FROM A z = 7.1 QUASAR HOST GALAXY , 2012, 1203.5844.

[4]  B. Groves,et al.  RESOLVING THE FAR-IR LINE DEFICIT: PHOTOELECTRIC HEATING AND FAR-IR LINE COOLING IN NGC 1097 AND NGC 4559 , 2012, 1201.1016.

[5]  A. Abergel,et al.  Spatial variation of the cooling lines in the Orion Bar from Herschel/PACS , 2011, 1111.3653.

[6]  J. Bernard-Salas,et al.  CASSIS: THE CORNELL ATLAS OF SPITZER/INFRARED SPECTROGRAPH SOURCES. II. HIGH-RESOLUTION OBSERVATIONS , 2011, 1108.3507.

[7]  D. Calzetti,et al.  The Herschel M 33 extended survey (HerM33es): PACS spectroscopy of the star-forming region BCLMP 302 , 2011, 1106.5464.

[8]  J. Houck,et al.  INFRARED SPECTRA AND SPECTRAL ENERGY DISTRIBUTIONS FOR DUSTY STARBURSTS AND ACTIVE GALACTIC NUCLEI , 2011, 1101.3876.

[9]  T. Girard,et al.  THE THREE-DIMENSIONAL VELOCITY STRUCTURE OF THE THICK DISK FROM SPM4 AND RAVE DR2 , 2010, 1011.6253.

[10]  D. Benford,et al.  A 158 μm [C ii] LINE SURVEY OF GALAXIES AT z ∼ 1–2: AN INDICATOR OF STAR FORMATION IN THE EARLY UNIVERSE , 2010, 1009.4216.

[11]  S. Ott,et al.  Herschel Space Observatory - An ESA facility for far-infrared and submillimetre astronomy , 2010, 1005.5331.

[12]  Albrecht Poglitsch,et al.  Herschel-PACS spectroscopic diagnostics of local ULIRGs: conditions and kinematics in Markarian 231 , 2010, 1005.2213.

[13]  K. Coppin,et al.  Herschel and SCUBA-2 imaging and spectroscopy of a bright, lensed submillimetre galaxy at z = 2.3 , 2010, 1005.1071.

[14]  J. Houck,et al.  COMPARING ULTRAVIOLET- AND INFRARED-SELECTED STARBURST GALAXIES IN DUST OBSCURATION AND LUMINOSITY , 2010, 1004.1551.

[15]  P. Cox,et al.  FAR-INFRARED PROPERTIES OF SPITZER-SELECTED LUMINOUS STARBURSTS , 2010, 1004.0819.

[16]  C. Tucker,et al.  DETECTION OF THE 158 μm [C ii] TRANSITION AT z = 1.3: EVIDENCE FOR A GALAXY-WIDE STARBURST , 2010, 1003.2174.

[17]  A. M. Swinbank,et al.  MID-INFRARED SPECTROSCOPY OF CANDIDATE ACTIVE GALACTIC NUCLEI-DOMINATED SUBMILLIMETER GALAXIES , 2010, 1003.0447.

[18]  Jia-Sheng Huang,et al.  STRONG POLYCYCLIC AROMATIC HYDROCARBON EMISSION FROM z ≈ 2 ULIRGs , 2009 .

[19]  Jia-Sheng Huang,et al.  SPITZER/IRS 5–35 μm LOW-RESOLUTION SPECTROSCOPY OF THE 12 μm SEYFERT SAMPLE , 2009, 0906.2004.

[20]  Jia-Sheng Huang,et al.  Strong PAH Emission from z~2 ULIRGs , 2009, 0905.4274.

[21]  J. Houck,et al.  EVOLUTION OF THE MOST LUMINOUS DUSTY GALAXIES , 2009, 0904.2331.

[22]  N. Abel,et al.  DUST-BOUNDED ULTRALUMINOUS INFRARED GALAXIES: MODEL PREDICTIONS FOR INFRARED SPECTROSCOPIC SURVEYS , 2009, 0903.4643.

[23]  I. Smail,et al.  MID-INFRARED SPECTROSCOPY OF SUBMILLIMETER GALAXIES: EXTENDED STAR FORMATION IN MASSIVE HIGH-REDSHIFT GALAXIES , 2009, 0903.4017.

[24]  J. Houck,et al.  AVERAGE INFRARED GALAXY SPECTRA FROM SPITZER FLUX-LIMITED SAMPLES , 2008, 0811.1533.

[25]  F. Bertoldi,et al.  MAMBO 1.2 mm OBSERVATIONS OF LUMINOUS STARBURSTS AT z ∼ 2 IN THE SWIRE FIELDS , 2008, 0810.1293.

[26]  C. Steidel,et al.  A STEEP FAINT-END SLOPE OF THE UV LUMINOSITY FUNCTION AT z ∼ 2–3: IMPLICATIONS FOR THE GLOBAL STELLAR MASS DENSITY AND STAR FORMATION IN LOW-MASS HALOS , 2008, 0810.2788.

[27]  J. Houck,et al.  The Most Luminous Starbursts in the Universe , 2008, 0806.4101.

[28]  G. Helou,et al.  A Compendium of Far-Infrared Line and Continuum Emission for 227 Galaxies Observed by the Infrared Space Observatory , 2008, 0805.2930.

[29]  C. Lonsdale,et al.  The Nature of Star Formation in Distant Ultraluminous Infrared Galaxies Selected in a Remarkably Narrow Redshift Range , 2008, 0801.1842.

[30]  Arjun Dey,et al.  A Significant Population of Very Luminous Dust-Obscured Galaxies at Redshift z ~ 2 , 2008, 0801.1860.

[31]  D. Elbaz,et al.  Mid-Infrared Spectral Diagnosis of Submillimeter Galaxies , 2007, 0711.1553.

[32]  Thomas Henning,et al.  The Photodetector Array Camera and Spectrometer (PACS) for the Herschel Space Observatory , 2004, Astronomical Telescopes + Instrumentation.

[33]  E. Floc’h,et al.  Spitzer Spectra of a 10 mJy Galaxy Sample and the Star Formation Rate in the Local Universe , 2007, 0708.2400.

[34]  Takao Nakagawa,et al.  A Spitzer IRS Low-Resolution Spectroscopic Search for Buried AGNs in Nearby Ultraluminous Infrared Galaxies: A Constraint on Geometry between Energy Sources and Dust , 2007, astro-ph/0702136.

[35]  J. Surace,et al.  Spitzer Mid-Infrared Spectroscopy of Infrared Luminous Galaxies at z ~ 2. I. The Spectra , 2006, astro-ph/0612297.

[36]  Jr.,et al.  The Mid-Infrared Spectrum of Star-forming Galaxies: Global Properties of Polycyclic Aromatic Hydrocarbon Emission , 2006, astro-ph/0610913.

[37]  R. Meijerink,et al.  Diagnostics of irradiated dense gas in galaxy nuclei. II. A grid of XDR and PDR models , 2006, astro-ph/0610360.

[38]  J. Bernard-Salas,et al.  The Mid-Infrared Properties of Starburst Galaxies from Spitzer-IRS Spectroscopy , 2006 .

[39]  J. Houck,et al.  Deep Mid-Infrared Silicate Absorption as a Diagnostic of Obscuring Geometry toward Galactic Nuclei , 2006, astro-ph/0611458.

[40]  E. Wright A Cosmology Calculator for the World Wide Web , 2006, astro-ph/0609593.

[41]  Arjun Dey,et al.  The 1 < z < 5 Infrared Luminosity Function of Type I Quasars , 2005, astro-ph/0510504.

[42]  A. Weiss,et al.  First detection of [CII]158 μm at high redshift : vigorous star formation in the early universe , 2005, astro-ph/0508064.

[43]  W. Brandt,et al.  The X-Ray Spectral Properties of SCUBA Galaxies , 2005, astro-ph/0506608.

[44]  Tucson,et al.  Infrared Luminosity Functions from the Chandra Deep Field-South: The Spitzer View on the History of Dusty Star Formation at 0 ≲ z ≲ 1* , 2005, astro-ph/0506462.

[45]  A. Tielens,et al.  The Detection of Silicate Emission from Quasars at 10 and 18 Microns , 2005, astro-ph/0504423.

[46]  M. Rieke,et al.  Spectroscopic Redshifts to z > 2 for Optically Obscured Sources Discovered with the Spitzer Space Telescope , 2005, astro-ph/0502216.

[47]  I. Smail,et al.  A Redshift Survey of the Submillimeter Galaxy Population , 2004, astro-ph/0412573.

[48]  E. Peeters,et al.  Polycyclic Aromatic Hydrocarbons as a Tracer of Star Formation? , 2004 .

[49]  Paul S. Smith,et al.  The Multiband Imaging Photometer for Spitzer (MIPS) , 2004 .

[50]  M. Burgdorf,et al.  Fire and Ice: Spitzer Infrared Spectrograph (IRS) Mid-Infrared Spectroscopy of IRAS F00183–7111 , 2004 .

[51]  J. R. Houck,et al.  The SMART Data Analysis Package for the Infrared Spectrograph on the Spitzer Space Telescope , 2004, astro-ph/0408295.

[52]  E. Peeters,et al.  PAHs as a tracer of star formation , 2004, astro-ph/0406183.

[53]  G. Rieke,et al.  Polycyclic Aromatic Hydrocarbon Contribution to the Infrared Output Energy of the Universe at z ≃ 2 , 2004, astro-ph/0406016.

[54]  Oxford,et al.  The 2dF QSO Redshift Survey – XII. The spectroscopic catalogue and luminosity function , 2004, astro-ph/0403040.

[55]  M. Wolfire,et al.  The [C II] 158 Micron Line Deficit in Ultraluminous Infrared Galaxies Revisited , 2003, astro-ph/0305520.

[56]  S. Malhotra,et al.  Far-Infrared Spectroscopy of Normal Galaxies: Physical Conditions in the Interstellar Medium , 2001, astro-ph/0106485.

[57]  D. Elbaz,et al.  Interpreting the Cosmic Infrared Background: Constraints on the Evolution of the Dust-enshrouded Star Formation Rate , 2001, astro-ph/0103067.

[58]  S. Malhotra,et al.  Evidence for the Heating of Atomic Interstellar Gas by Polycyclic Aromatic Hydrocarbons , 2001 .

[59]  Alexander G. G. M. Tielens,et al.  Photodissociation Regions in the Interstellar Medium of Galaxies , 1999 .

[60]  Jr.,et al.  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.

[61]  L. Pozzetti,et al.  The Star Formation History of Field Galaxies , 1997, astro-ph/9708220.

[62]  D. Kunze,et al.  What Powers Ultraluminous IRAS Galaxies? , 1997, astro-ph/9711255.

[63]  D. Sanders,et al.  LUMINOUS INFRARED GALAXIES , 1996 .

[64]  Heinrich Spiecker,et al.  Conclusions and Summary , 1996 .

[65]  A. Poglitsch,et al.  The 158 micron forbidden C II line - A measure of global star formation activity in galaxies , 1991 .

[66]  G. Neugebauer,et al.  The iras view of the extragalactic sky , 1987 .

[67]  A. Tielens,et al.  Photodissociation regions. I - Basic model. II - A model for the Orion photodissociation region , 1985 .