Recommendation Systems

A recommendation system tracks past actions of a group of users to make recommendations to individual members of the group. The growth of computer-mediated marketing and commerce has led to increased interest in such systems. We introduce a simple analytical framework for recommendation systems, including a basis for defining the utility of such a system. We perform probabilistic analyses of algorithms within this framework. These analyses yield insights into how much utility can be derived from knowledge of past user actions.

[1]  J. Bettman An information processing theory of consumer choice , 1979 .

[2]  Gene H. Golub,et al.  Matrix computations , 1983 .

[3]  Leslie G. Valiant,et al.  A theory of the learnable , 1984, STOC '84.

[4]  Béla Bollobás,et al.  Random Graphs , 1985 .

[5]  David C. Schmittlein,et al.  Counting Your Customers: Who-Are They and What Will They Do Next? , 1987 .

[6]  Ravi B. Boppana,et al.  Eigenvalues and graph bisection: An average-case analysis , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[7]  Johanna D. Moore,et al.  Proceedings of the Conference on Human Factors in Computing Systems , 1989 .

[8]  J. Howard Consumer Behavior In Marketing Strategy , 1989 .

[9]  Robert B. Allen,et al.  User Models: Theory, Method, and Practice , 1990, Int. J. Man Mach. Stud..

[10]  T. Landauer,et al.  Indexing by Latent Semantic Analysis , 1990 .

[11]  Rashi Glazer Marketing in an Information-Intensive Environment: Strategic Implications of Knowledge as an Asset , 1991 .

[12]  Douglas B. Terry,et al.  Using collaborative filtering to weave an information tapestry , 1992, CACM.

[13]  Upendra Shardanand Social information filtering for music recommendation , 1994 .

[14]  John D. C. Little,et al.  The Marketing Information Revolution , 1994 .

[15]  Pattie Maes,et al.  Social information filtering: algorithms for automating “word of mouth” , 1995, CHI '95.

[16]  Mark Rosenstein,et al.  Recommending and evaluating choices in a virtual community of use , 1995, CHI '95.

[17]  Said Salhi,et al.  Facility Location: A Survey of Applications and Methods , 1996 .

[18]  Dennis L. Hoffman,et al.  Marketing in Hypermedia Computer-Mediated Environments : Conceptual Foundations 1 ) , 1998 .

[19]  F. Dwyer Customer lifetime valuation to support marketing decision making , 1997 .

[20]  Bradley N. Miller,et al.  Experiences with GroupLens: marking usenet useful again , 1997 .

[21]  David Heckerman,et al.  Empirical Analysis of Predictive Algorithms for Collaborative Filtering , 1998, UAI.

[22]  Bradley N. Miller,et al.  Using filtering agents to improve prediction quality in the GroupLens research collaborative filtering system , 1998, CSCW '98.

[23]  Santosh S. Vempala,et al.  Latent semantic indexing: a probabilistic analysis , 1998, PODS '98.

[24]  Jon M. Kleinberg,et al.  Segmentation problems , 2004, JACM.

[25]  Ravi Kumar,et al.  On targeting Markov segments , 1999, STOC '99.

[26]  Loriene Roy,et al.  Content-based book recommending using learning for text categorization , 1999, DL '00.

[27]  A. K. Pujari,et al.  Data Mining Techniques , 2006 .

[28]  Barry Smyth,et al.  Personalized Electronic Program Guides for Digital TV , 2001, AI Mag..

[29]  John Riedl,et al.  Item-based collaborative filtering recommendation algorithms , 2001, WWW '01.

[30]  Yizhak Idan,et al.  Customer lifetime value modeling and its use for customer retention planning , 2002, KDD.