The efficient evaluation of the hypergeometric function of a matrix argument

We present new algorithms that efficiently approximate the hypergeometric function of a matrix argument through its expansion as a series of Jack functions. Our algorithms exploit the combinatorial properties of the Jack function, and have complexity that is only linear in the size of the matrix.

[1]  R. Gutiérrez,et al.  APPROXIMATION OF HYPERGEOMETRIC FUNCTIONS WITH MATRICIAL ARGUMENT THROUGH THEIR DEVELOPMENT IN SERIES OF ZONAL POLYNOMIALS , 2000 .

[2]  R. Stanley,et al.  Enumerative Combinatorics: Index , 1999 .

[3]  G. Hardy,et al.  Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work , 1978 .

[4]  Andrew T. A. Wood,et al.  Laplace approximations for hypergeometric functions with matrix argument , 2002 .

[5]  A. Edelman,et al.  Matrix models for beta ensembles , 2002, math-ph/0206043.

[6]  Mohamed-Slim Alouini,et al.  Largest eigenvalue of complex Wishart matrices and performance analysis of MIMO MRC systems , 2003, IEEE J. Sel. Areas Commun..

[7]  Alan Edelman,et al.  Tails of Condition Number Distributions , 2005, SIAM J. Matrix Anal. Appl..

[8]  K. I. Gross,et al.  Total positivity, spherical series, and hypergeometric functions of matrix argu ment , 1989 .

[9]  Keith E. Muller,et al.  Computing the confluent hypergeometric function, M(a,b,x) , 2001, Numerische Mathematik.

[10]  I. G. MacDonald,et al.  Symmetric functions and Hall polynomials , 1979 .

[11]  A. Edelman,et al.  Random matrix theory , 2005, Acta Numerica.

[12]  M. V. Clark,et al.  Theoretical reliability of MMSE linear diversity combining in Rayleigh-fading additive interference channels , 1998, IEEE Trans. Commun..

[13]  R. Stanley Some combinatorial properties of Jack symmetric functions , 1989 .

[14]  R. Muirhead Aspects of Multivariate Statistical Theory , 1982, Wiley Series in Probability and Statistics.

[15]  Robb J. Muirhead,et al.  Latent Roots and Matrix Variates: A Review of Some Asymptotic Results , 1978 .

[16]  James Demmel,et al.  Accurate and efficient evaluation of Schur and Jack functions , 2005, Math. Comput..

[17]  P. Koev,et al.  On the largest principal angle between random subspaces , 2006 .

[18]  Ioana Dumitriu Eigenvalue statistics for beta-ensembles , 2003 .