Dual-Emissive and Color-Tunable Mn-Doped InP/ZnS Quantum Dots via a Growth-Doping Method

[1]  Zhiming M. Wang,et al.  Quantum Dots: Near‐Infrared, Heavy Metal‐Free Colloidal “Giant” Core/Shell Quantum Dots (Adv. Energy Mater. 2/2018) , 2018 .

[2]  Zhiming M. Wang,et al.  Near‐Infrared, Heavy Metal‐Free Colloidal “Giant” Core/Shell Quantum Dots , 2018 .

[3]  Wu Yang,et al.  Controllable synthesis of dual emissive Ag:InP/ZnS quantum dots with high fluorescence quantum yield , 2017 .

[4]  Wu Yang,et al.  Tunable emission of Cu (Mn)-doped ZnInS quantum dots via dopant interaction. , 2017, Journal of colloid and interface science.

[5]  C. Pan,et al.  White-light-emitting Cu,Mn co-doped Zn–In–S/ZnS quantum dots with high stability and their electroluminescence , 2017 .

[6]  Luyi Sun,et al.  Room-Temperature Synthesis of Mn-Doped Cesium Lead Halide Quantum Dots with High Mn Substitution Ratio. , 2017, The journal of physical chemistry letters.

[7]  Bibek Thapa,et al.  L-cysteine capped ZnS:Mn quantum dots for room-temperature detection of dopamine with high sensitivity and selectivity. , 2017, Biosensors & bioelectronics.

[8]  Zhiming M. Wang,et al.  Heavy metal-free, near-infrared colloidal quantum dots for efficient photoelectrochemical hydrogen generation , 2017 .

[9]  H. Chae,et al.  Tunable White Fluorescent Copper Gallium Sulfide Quantum Dots Enabled by Mn Doping. , 2016, ACS applied materials & interfaces.

[10]  M. Bayer,et al.  Band-Edge Exciton Fine Structure and Recombination Dynamics in InP/ZnS Colloidal Nanocrystals. , 2016, ACS nano.

[11]  Z. Hens,et al.  Economic and size-tunable synthesis of InP/ZnE (E = S, Se) colloidal quantum dots , 2015 .

[12]  G. Adami,et al.  Permeation of platinum and rhodium nanoparticles through intact and damaged human skin , 2015, Journal of Nanoparticle Research.

[13]  Ji Hye Oh,et al.  Realization of InP/ZnS quantum dots for green, amber and red down-converted LEDs and their color-tunable, four-package white LEDs , 2015 .

[14]  Wensheng Yang,et al.  Dual Emissive Cu:InP/ZnS/InP/ZnS Nanocrystals: Single-Source “Greener” Emitters with Flexibly Tunable Emission from Visible to Near-Infrared and Their Application in White Light-Emitting Diodes , 2015 .

[15]  Lídia M D Gonçalves,et al.  Comparative study of chitosan- and PEG-coated lipid and PLGA nanoparticles as oral delivery systems for cannabinoids , 2015, Journal of Nanoparticle Research.

[16]  Yang Jiang,et al.  A bright blue-shifted emission from Mn2+-doped CdS quantum dots , 2014 .

[17]  K. G. Thomas,et al.  InP Quantum Dots: An Environmentally Friendly Material with Resonance Energy Transfer Requisites , 2014 .

[18]  Heesun Yang,et al.  Amine-derived synthetic approach to color-tunable InP/ZnS quantum dots with high fluorescent qualities , 2013, Journal of Nanoparticle Research.

[19]  Yuhua Shen,et al.  Enhancement of blue fluorescence on the ZnSe quantum dots doped with transition metal ions , 2012 .

[20]  D. Sarma,et al.  Advances in Light-Emitting Doped Semiconductor Nanocrystals , 2011 .

[21]  D. Sarma,et al.  Doping transition metal (Mn or Cu) ions in semiconductor nanocrystals , 2010 .

[22]  Xiaogang Peng,et al.  Synthesis of Cu-doped InP nanocrystals (d-dots) with ZnSe diffusion barrier as efficient and color-tunable NIR emitters. , 2009, Journal of the American Chemical Society.

[23]  D. Sarma,et al.  To dope Mn2+ in a semiconducting nanocrystal. , 2008, Journal of the American Chemical Society.