EZ does it! Extensions of the EZ-diffusion model
暂无分享,去创建一个
[1] R. Hohle. INFERRED COMPONENTS OF REACTION TIMES AS FUNCTIONS OF FOREPERIOD DURATION. , 1965, Journal of experimental psychology.
[2] 文魚 長谷川. D.R. Cox and H.D. Miller: The Theory of Stochastic Processes, Methuen. London, 1965, 398頁, 24×16cm, 4,200円. , 1966 .
[3] J. Griffiths. The Theory of Stochastic Processes , 1967 .
[4] David R. Cox,et al. The Theory of Stochastic Processes , 1967, The Mathematical Gazette.
[5] David R. Cox,et al. The Theory of Stochastic Processes , 1967, The Mathematical Gazette.
[6] John W. Tukey,et al. Exploratory Data Analysis. , 1979 .
[7] Roger Ratcliff,et al. A Theory of Memory Retrieval. , 1978 .
[8] R. Ratcliff. Group reaction time distributions and an analysis of distribution statistics. , 1979, Psychological bulletin.
[9] R. Duncan Luce,et al. Response Times: Their Role in Inferring Elementary Mental Organization , 1986 .
[10] Andrew Heathcote,et al. RTSYS: A DOS application for the analysis of reaction time data , 1996 .
[11] Peter C. M. Molenaar,et al. A framework for ML estimation of parameters of (mixtures of) common reaction time distributions given optional truncation or censoring , 2002, Behavior research methods, instruments, & computers : a journal of the Psychonomic Society, Inc.
[12] R. Ratcliff,et al. Estimating parameters of the diffusion model: Approaches to dealing with contaminant reaction times and parameter variability , 2002, Psychonomic bulletin & review.
[13] F. Tuerlinckx. The efficient computation of the cumulative distribution and probability density functions in the diffusion model , 2004, Behavior research methods, instruments, & computers : a journal of the Psychonomic Society, Inc.
[14] Philip L. Smith,et al. A comparison of sequential sampling models for two-choice reaction time. , 2004, Psychological review.
[15] Xiao-Jing Wang,et al. Cortico–basal ganglia circuit mechanism for a decision threshold in reaction time tasks , 2006, Nature Neuroscience.
[16] Andreas Voss,et al. Fast-dm: A free program for efficient diffusion model analysis , 2007, Behavior research methods.
[17] Eric-Jan Wagenmakers,et al. An EZ-diffusion model for response time and accuracy , 2007, Psychonomic bulletin & review.
[18] Francis Tuerlinckx,et al. Fitting the ratcliff diffusion model to experimental data , 2007, Psychonomic bulletin & review.
[19] Roger Ratcliff,et al. The Diffusion Decision Model: Theory and Data for Two-Choice Decision Tasks , 2008, Neural Computation.
[20] Roger Ratcliff,et al. The EZ diffusion method: Too EZ? , 2008, Psychonomic bulletin & review.
[21] K. R. Ridderinkhof,et al. Striatum and pre-SMA facilitate decision-making under time pressure , 2008, Proceedings of the National Academy of Sciences.
[22] Han L. J. van der Maas,et al. On the mean and variance of response times under the diffusion model with an application to parameter estimation , 2009 .
[23] Andreas Voss,et al. A fast numerical algorithm for the estimation of diffusion model parameters , 2008 .
[24] Francis Tuerlinckx,et al. Diffusion model analysis with MATLAB: A DMAT primer , 2008, Behavior research methods.
[25] Scott D. Brown,et al. The simplest complete model of choice response time: Linear ballistic accumulation , 2008, Cognitive Psychology.
[26] Eric-Jan Wagenmakers,et al. Methodological and empirical developments for the Ratcliff diffusion model of response times and accuracy , 2009 .