EZ does it! Extensions of the EZ-diffusion model

In this rejoinder, we address two of Ratcliff’s main concerns with respect to the EZ-diffusion model (Ratcliff, 2008). First, we introduce “robust-EZ,” a mixture model approach to achieve robustness against the presence of response contaminants that might otherwise distort parameter estimates. Second, we discuss an extension of the EZ model that allows the estimation of starting point as an additional parameter. Together with recently developed, user-friendly software programs for fitting the full diffusion model (Vandekerckhove & Tuerlinckx, 2007; Voss & Voss, 2007), the development of the EZ model and its extensions is part of a larger effort to make diffusion model analyses accessible to a broader audience, an effort that is long overdue.

[1]  R. Hohle INFERRED COMPONENTS OF REACTION TIMES AS FUNCTIONS OF FOREPERIOD DURATION. , 1965, Journal of experimental psychology.

[2]  文魚 長谷川 D.R. Cox and H.D. Miller: The Theory of Stochastic Processes, Methuen. London, 1965, 398頁, 24×16cm, 4,200円. , 1966 .

[3]  J. Griffiths The Theory of Stochastic Processes , 1967 .

[4]  David R. Cox,et al.  The Theory of Stochastic Processes , 1967, The Mathematical Gazette.

[5]  David R. Cox,et al.  The Theory of Stochastic Processes , 1967, The Mathematical Gazette.

[6]  John W. Tukey,et al.  Exploratory Data Analysis. , 1979 .

[7]  Roger Ratcliff,et al.  A Theory of Memory Retrieval. , 1978 .

[8]  R. Ratcliff Group reaction time distributions and an analysis of distribution statistics. , 1979, Psychological bulletin.

[9]  R. Duncan Luce,et al.  Response Times: Their Role in Inferring Elementary Mental Organization , 1986 .

[10]  Andrew Heathcote,et al.  RTSYS: A DOS application for the analysis of reaction time data , 1996 .

[11]  Peter C. M. Molenaar,et al.  A framework for ML estimation of parameters of (mixtures of) common reaction time distributions given optional truncation or censoring , 2002, Behavior research methods, instruments, & computers : a journal of the Psychonomic Society, Inc.

[12]  R. Ratcliff,et al.  Estimating parameters of the diffusion model: Approaches to dealing with contaminant reaction times and parameter variability , 2002, Psychonomic bulletin & review.

[13]  F. Tuerlinckx The efficient computation of the cumulative distribution and probability density functions in the diffusion model , 2004, Behavior research methods, instruments, & computers : a journal of the Psychonomic Society, Inc.

[14]  Philip L. Smith,et al.  A comparison of sequential sampling models for two-choice reaction time. , 2004, Psychological review.

[15]  Xiao-Jing Wang,et al.  Cortico–basal ganglia circuit mechanism for a decision threshold in reaction time tasks , 2006, Nature Neuroscience.

[16]  Andreas Voss,et al.  Fast-dm: A free program for efficient diffusion model analysis , 2007, Behavior research methods.

[17]  Eric-Jan Wagenmakers,et al.  An EZ-diffusion model for response time and accuracy , 2007, Psychonomic bulletin & review.

[18]  Francis Tuerlinckx,et al.  Fitting the ratcliff diffusion model to experimental data , 2007, Psychonomic bulletin & review.

[19]  Roger Ratcliff,et al.  The Diffusion Decision Model: Theory and Data for Two-Choice Decision Tasks , 2008, Neural Computation.

[20]  Roger Ratcliff,et al.  The EZ diffusion method: Too EZ? , 2008, Psychonomic bulletin & review.

[21]  K. R. Ridderinkhof,et al.  Striatum and pre-SMA facilitate decision-making under time pressure , 2008, Proceedings of the National Academy of Sciences.

[22]  Han L. J. van der Maas,et al.  On the mean and variance of response times under the diffusion model with an application to parameter estimation , 2009 .

[23]  Andreas Voss,et al.  A fast numerical algorithm for the estimation of diffusion model parameters , 2008 .

[24]  Francis Tuerlinckx,et al.  Diffusion model analysis with MATLAB: A DMAT primer , 2008, Behavior research methods.

[25]  Scott D. Brown,et al.  The simplest complete model of choice response time: Linear ballistic accumulation , 2008, Cognitive Psychology.

[26]  Eric-Jan Wagenmakers,et al.  Methodological and empirical developments for the Ratcliff diffusion model of response times and accuracy , 2009 .