Thermal Barrier Coatings for Aeroengine Applications

Thermal barrier coatings (TBCs) have been in use in aeroturbine engine hot sections for over 20 years. The initial applications were driven by the need to suppress component degradation caused by excessive thermal gradients in vane airfoils. A TBC is essentially a layered, multimaterial structure that must withstand harsh temperature, environmental, thermal cycling, and stress conditions for an extended number of aircraft takeoffs and landings. A description of the TBC materials systems presently in use is presented, together with a summary of current understanding of materials and failure issues in TBCs.

[1]  P. Hou,et al.  Interfacial Segregation, Pore Formation, and Scale Adhesion on NiAl Alloys , 2001 .

[2]  E. Jordan,et al.  Damage evolution in an electron beam physical vapor deposited thermal barrier coating as a function of cycle temperature and time , 2005 .

[3]  Lin Liu,et al.  Grain refinement of superalloy K4169 by addition of refiners: cast structure and refinement mechanisms , 2005 .

[4]  Karl I. Jacob,et al.  Experimental trends in polymer nanocomposites—a review , 2005 .

[5]  W. Wang,et al.  Effects of Platinum on the Interdiffusion and Oxidation Behavior of Ni-Al-Based Alloys , 2004 .

[6]  M. Ebadian,et al.  Mixed Convection in the Cusped Duct , 1994 .

[7]  A. G. Evans,et al.  Failure mechanisms associated with the thermally grown oxide in plasma-sprayed thermal barrier coatings , 2000 .

[8]  John R. Nicholls,et al.  Advances in Coating Design for High-Performance Gas Turbines , 2003 .

[9]  I. Wright,et al.  Influence of Sulfur, Platinum, and Hafnium on the Oxidation Behavior of CVD NiAl Bond Coatings , 2002 .

[10]  G. Borchardt,et al.  On the oxidation mechanism of alumina formers , 1991 .

[11]  D. Young,et al.  The hot-corrosion behavior of novel CO-deposited chromium-modified aluminide coatings , 1992 .

[12]  R. Sivakumar An evaluation study of aluminide and chromoaluminide coatings on IN-100 , 1982 .

[13]  E. Jordan,et al.  Thermal Barrier Coatings for Gas-Turbine Engine Applications , 2002, Science.

[14]  David R. Clarke,et al.  SPALLING FAILURE OF A THERMAL BARRIER COATING ASSOCIATED WITH ALUMINUM DEPLETION IN THE BOND-COAT , 1999 .

[15]  F. Stott The Oxidation of Alumina-Forming Alloys , 1997 .

[16]  C. Barrett A statistical analysis of elevated temperature gravimetric cyclic oxidation data of 36 Ni- and Co-base superalloys based on an oxidation attack parameter , 1992 .

[17]  B. Gleeson,et al.  Interdiffusion behavior of Pt-modified γ-Ni + γ′-Ni3Al alloys coupled to Ni-Al-based alloys , 2005 .

[18]  R. Janakiraman,et al.  The effect of water vapor on the oxidation of alloys that develop alumina scales for protection , 1999 .

[19]  D. Young,et al.  Codeposited Chromium‐Aluminide Coatings I . Definition of the Codeposition Regimes , 1994 .

[20]  B. Pint The Oxidation Behavior of Oxide-Dispersed β-NiAl: I. Short-Term Performance at 1200°C , 1998 .

[21]  P. Hou,et al.  Stress development and relaxation in Al2O3 during early stage oxidation of β-NiAl , 2005 .

[22]  J. Hutchinson,et al.  Undulation instability of a compressed elastic film on a nonlinear creeping substrate , 2003 .

[23]  A. Evans,et al.  On the failure mechanisms of thermal barrier coatings with diffusion aluminide bond coatings , 2005 .

[24]  W. Pompe,et al.  Stress development in alumina scales formed upon oxidation of (111) NiAl single crystals , 1997 .

[25]  F. Pettit,et al.  Development, growth, and adhesion of Al2O3 on platinum-aluminum alloys , 1976 .

[26]  J. Smialek,et al.  Design for Oxidation Resistance , 1997 .

[27]  T. A. Cruse,et al.  Thermal Barrier Coating Life Prediction Model Development , 1988 .

[28]  B. Wu,et al.  Effects of bond coat preoxidation on the properties of ZrO2-8wt.% Y2O3/Ni-22Cr-10Al-1Y thermal-barrier coatings , 1991 .

[29]  B. Gill,et al.  Plasma spray coating processes , 1986 .

[30]  G. W. Goward,et al.  Progress in coatings for gas turbine airfoils , 1998 .

[31]  R. Rapp,et al.  Pack Cementation Aluminide Coatings on Superalloys: Codeposition of Cr and Reactive Elements , 1992 .

[32]  D. Nissley,et al.  Thermal barrier coating life prediction model development, phase 2. Final report , 1991 .

[33]  D. Stone,et al.  Stacking fault energy and dynamic recovery: do they impact the indentation size effect? , 2003 .

[34]  Soon-Bok Lee,et al.  Analysis on failures of protective-oxide layers and cyclic oxidation , 1993 .

[35]  C. Leyens,et al.  EB-PVD thermal barrier coatings for aeroengines and gas turbines , 2001 .

[36]  George C. Chang,et al.  Finite element thermal stress solutions for thermal barrier coatings , 1987 .

[37]  B. L. Ferguson,et al.  A software tool to design thermal barrier coatings: a technical note , 1995 .

[38]  A. Evans,et al.  Foreign object damage in a thermal barrier system: Mechanisms and simulations , 2003 .

[39]  A. Crosky,et al.  Interdiffusion behaviour in aluminide-coated René 80H at 1150°C , 1997 .

[40]  Woo Y. Lee,et al.  Effects of Pt incorporation on the isothermal oxidation behavior of chemical vapor deposition aluminide coatings , 2001 .

[41]  T. Narita,et al.  Formation of a Rhenium-base Diffusion-barrier-coating System on Ni-base Single Crystal Superalloy and its Stability at 1,423 K , 2007 .

[42]  T. Narita,et al.  High Temperature Oxidation Resistant Coatings-Coating design from a chemical potential and interdiffusion perspective- , 2006 .

[43]  Woo Y. Lee,et al.  Substrate and bond coat compositions: factors affecting alumina scale adhesion , 1998 .

[44]  R. A. Miller Progress Toward Life Modeling of Thermal Barrier Coatings for Aircraft Gas Turbine Engines , 1987 .

[45]  W. C. Hagel The Oxidation off Iron, Nickel and Cobalt-Base Alloys Containing Aluminum , 1965 .

[46]  M. Pomeroy,et al.  Coatings for gas turbine materials and long term stability issues , 2005 .

[47]  F. Stott,et al.  The influence of platinum on the maintenance of α-Al2O3 as a protective scale , 1976 .

[48]  I. Kvernes,et al.  High temperature oxidation of Fe13CrxAl alloys in vapour mixtures , 1977 .

[49]  A. Evans,et al.  A numerical assessment of the durability of thermal barrier systems that fail by ratcheting of the thermally grown oxide , 2003 .

[50]  S. Tewari,et al.  The concept and development of emission spectroscopy for the non-destructive evaluation (NDE) of the failure of thermal barrier coatings , 2007 .

[51]  J. Smialek Maintaining adhesion of protective Al2O3 scales , 2000 .

[52]  D. K. Gupta,et al.  The Evolution of Thermal Barrier Coatings in Gas Turbine Engine Applications , 1992 .

[53]  A. Evans,et al.  A delamination mechanism for thermal barrier coatings subject to calcium-magnesium-alumino-silicate (CMAS) infiltration , 2005 .

[54]  K. Natesan,et al.  Sulfidation-oxidation of advanced metallic materials in simulated low-Btu coal-gasifier environments , 1982 .

[55]  G. W. Goward,et al.  Pack Cementation Coatings for Superalloys: A Review of History, Theory, and Practice , 1988 .

[56]  T. Rhys-Jones,et al.  Coatings for blade and vane applications in gas turbines , 1989 .

[57]  M. Pomeroy,et al.  Microstructural instability in coated single crystal superalloys , 2004 .

[58]  K. Schlichting Failure modes of plasma-sprayed thermal barrier coatings , 2003 .

[59]  Robert A. Miller,et al.  Oxidation‐Based Model for Thermal Barrier Coating Life , 1984 .

[60]  B. Zimmerman Rumpling phenomenon in platinum modified Ni-Al alloys , 2005 .

[61]  M. Gell,et al.  Thermal conductivity of thermal barrier coatings , 1998 .

[62]  C. Barrett,et al.  Comparison of isothermal and cyclic oxidation behavior of twenty-five commercial sheet alloys at 1150°C , 1975 .

[63]  Anthony G. Evans,et al.  Mechanisms controlling the durability of thermal barrier coatings , 2001 .

[64]  A. Evans,et al.  On the delamination of thermal barrier coatings in a thermal gradient , 2002 .

[65]  M. R. Jackson,et al.  The aluminization of platinum and platinum-coated IN-738 , 1977 .

[66]  L. Zhang,et al.  Effects of targeted γ-Ni + γ′-Ni3Al-based coating compositions on oxidation behavior , 2007 .

[67]  D. Stöver,et al.  A life time model for ceramic thermal barrier coatings , 2003 .

[68]  D. H. Boone,et al.  Corrosion resistant modified aluminide coatings , 1988 .

[69]  E. Jordan,et al.  Assessment of damage accumulation in thermal barrier coatings using a fluorescent dye infiltration technique , 1999 .

[70]  R. Ott,et al.  Isothermal nature of martensite formation in Pt-modified β-NiAl alloys , 2007 .

[71]  D. Munz,et al.  Assessment of TBC systems failure mechanisms using a fracture mechanics approach , 2005 .

[72]  D. V. Rigney,et al.  PVD thermal barrier coating applications and process development for aircraft engines , 1997 .

[73]  Carlos G. Levi,et al.  MATERIALS DESIGN FOR THE NEXT GENERATION THERMAL BARRIER COATINGS , 2003 .

[74]  M. Lafont,et al.  On the Understanding of TGO Growth and Spallation in Nickel Aluminides , 2004 .

[75]  I. Wright Oxidation of iron-, nickel-, and cobalt-base alloys , 1972 .

[76]  P. Marcus,et al.  Effect of Platinum on the Growth Rate of the Oxide Scale Formed on Cast Nickel Aluminide Intermetallic Alloys , 2005 .

[77]  M. Morris,et al.  Grain-size refinement of γ-Ti-Al alloys: effect on mechanical properties , 1997 .

[78]  Woo Y. Lee,et al.  Effects of sulfur impurity on the scale adhesion behavior of a desulfurized Ni-based superalloy aluminized by chemical vapor deposition , 1998 .

[79]  E. Felten Use of platinum and rhodium to improve oxide adherence on Ni-8Cr-6Al alloys , 1976 .

[80]  T. Tsong A historic perspective of FIM and STM studies of surface diffusion , 2003 .

[81]  T. Narita,et al.  The Effect of an Applied External Tensile Stress on the Oxidation Behavior of a Nickel-Base Alloy with a Re-base Diffusion-barrier-coating , 2007 .