Sensorimotor Transformations in Spatial Orientation Relative to Gravity

Self-orientation in space is based on multisensory interactions of visual, vestibular and somatosensory-proprioceptive signals. In this article, we analyze vestibular signal processing in terms of its capacity to provide inertial cues for self-orientation in space. We show that vestibular signals from both the otolith organs and the semicircular canals must be processed in a bootstrap-operation like manner in order to obtain true inertial head-in-space orientation.

[1]  Dora E Angelaki,et al.  An integrative neural network for detecting inertial motion and head orientation. , 2004, Journal of neurophysiology.

[2]  J. H. Anderson,et al.  Changes in the dynamics of the vertical vestibulo-ocular reflex due to linear acceleration in the frontal plane of the cat , 1991, Experimental Brain Research.

[3]  B. Cohen,et al.  Effects of tilt of the gravito-inertial acceleration vector on the angular vestibuloocular reflex during centrifugation. , 1999, Journal of neurophysiology.

[4]  D. Angelaki,et al.  Inactivation of semicircular canals causes adaptive increases in otolith-driven tilt responses. , 2002, Journal of neurophysiology.

[5]  L. Young,et al.  The vestibulo-ocular reflex of the squirrel monkey during eccentric rotation and roll tilt , 2004, Experimental Brain Research.

[6]  B. Cohen,et al.  Spatial orientation of the vestibular system: dependence of optokinetic after-nystagmus on gravity. , 1991, Journal of neurophysiology.

[7]  B. Hess,et al.  Inertial representation of angular motion in the vestibular system of rhesus monkeys. I. Vestibuloocular reflex. , 1994, Journal of neurophysiology.

[8]  F. Guedry Psychophysics of Vestibular Sensation , 1974 .

[9]  Dora E Angelaki,et al.  Inertial vestibular coding of motion: concepts and evidence , 1997, Current Opinion in Neurobiology.

[10]  Theodore Raphan,et al.  Orientation of human optokinetic nystagmus to gravity: a model-based approach , 2004, Experimental Brain Research.

[11]  M. Sanders Handbook of Sensory Physiology , 1975 .

[12]  T Raphan,et al.  Modeling Slow Phase Velocity Generation during Off‐Vertical Axis Rotation a , 1988, Annals of the New York Academy of Sciences.

[13]  J. Goldberg,et al.  Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. I. Response to static tilts and to long-duration centrifugal force. , 1976, Journal of neurophysiology.

[14]  J. Goldberg,et al.  Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. II. Response to sinusoidal stimulation and dynamics of peripheral vestibular system. , 1971, Journal of neurophysiology.

[15]  B. Hess,et al.  Organizational Principles of Otolith‐ and Semicircular Canal‐Ocular Reflexes in Rhesus Monkeys a , 1996, Annals of the New York Academy of Sciences.

[16]  R. Mayne,et al.  A Systems Concept of the Vestibular Organs , 1974 .

[17]  O. Mowrer The influence of Vision during Bodily Rotation upon the Duration of Post-Rotational Vestibular Nystagmus , 1937 .

[18]  Bernhard J. M. Hess,et al.  Modelling spatiotemporal properties of directionally sensitive multi-input single-output systems , 2004, Biological Cybernetics.

[19]  T Raphan,et al.  Modeling the spatiotemporal organization of velocity storage in the vestibuloocular reflex by optokinetic studies. , 1991, Journal of neurophysiology.

[20]  L. Young,et al.  A multidimensional model of the effect of gravity on the spatial orientation of the monkey. , 1993, Journal of vestibular research : equilibrium & orientation.

[21]  D. Angelaki,et al.  Sensory vestibular contributions to constructing internal models of self-motion , 2005, Journal of neural engineering.

[22]  L. Zupan,et al.  Neural processing of gravitoinertial cues in humans. III. Modeling tilt and translation responses. , 2002, Journal of neurophysiology.

[23]  J. Dichgans,et al.  Otolith-semicircular canal interaction during postrotatory nystagmus in humans , 1996, Experimental Brain Research.

[24]  Jelte E. Bos,et al.  Theoretical considerations on canal–otolith interaction and an observer model , 2002, Biological Cybernetics.

[25]  Dora E Angelaki,et al.  Resolution of Sensory Ambiguities for Gaze Stabilization Requires a Second Neural Integrator , 2003, The Journal of Neuroscience.

[26]  Christian Darlot,et al.  Using sensory weighting to model the influence of canal, otolith and visual cues on spatial orientation and eye movements , 2002, Biological Cybernetics.

[27]  J. Goldberg,et al.  Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. 3. Variations among units in their discharge properties. , 1971, Journal of neurophysiology.

[28]  H. Misslisch,et al.  Canal-otolith interactions after off-vertical axis rotations. II. Spatiotemporal properties of roll and pitch postrotatory vestibuloocular reflexes. , 2005, Journal of neurophysiology.

[29]  B. J. M. Hess,et al.  Three-dimensional head angular velocity detection from otolith afferent signals , 1993, Biological Cybernetics.

[30]  J. Goldberg,et al.  Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. II. Directional selectivity and force-response relations. , 1976, Journal of neurophysiology.

[31]  Dora E. Angelaki,et al.  Neurons compute internal models of the physical laws of motion , 2004, Nature.

[32]  D E Angelaki,et al.  Differential processing of semicircular canal signals in the vestibulo- ocular reflex , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[33]  Dora E. Angelaki,et al.  Two-dimensional coding of linear acceleration and the angular velocity sensitivity of the otolith system , 1992, Biological Cybernetics.

[34]  S Glasauer,et al.  A Simple Model of Vestibular Canal‐Otolith Signal Fusion , 1999, Annals of the New York Academy of Sciences.

[35]  M. Fetter,et al.  The influence of head position and head reorientation on the axis of eye rotation and the vestibular time constant during postrotatory nystagmus , 2004, Experimental Brain Research.

[36]  B. Hess,et al.  Low-frequency otolith and semicircular canal interactions after canal inactivation , 2000, Experimental Brain Research.

[37]  B Cohen,et al.  Organizational Principles of Velocity Storage in Three Dimensions , 1988, Annals of the New York Academy of Sciences.

[38]  B. Cohen,et al.  Quantitative analysis of the velocity characteristics of optokinetic nystagmus and optokinetic after‐nystagmus , 1977, The Journal of physiology.

[39]  T. C. Hain,et al.  A model of the nystagmus induced by off vertical axis rotation , 1986, Biological Cybernetics.

[40]  B J Hess,et al.  Computation of Inertial Motion: Neural Strategies to Resolve Ambiguous Otolith Information , 1999, The Journal of Neuroscience.

[41]  M Rocchetti,et al.  Enantioselective recognition of two anticonvulsants, FCE 26743 and FCE 28073, by MAO, and relationship between MAO-B inhibition and FCE 26743 concentrations in rat brain. , 1995, Progress in brain research.

[42]  B. Cohen,et al.  Velocity storage in the vestibulo-ocular reflex arc (VOR) , 1979, Experimental Brain Research.

[43]  Olivier Faugeras,et al.  Cooperation of the inertial and visual systems , 1990 .

[44]  B. Cohen,et al.  Vertical optokinetic nystagmus and vestibular nystagmus in the monkey: Up-down asymmetry and effects of gravity , 2004, Experimental Brain Research.

[45]  J. Goldberg,et al.  Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. III. Response dynamics. , 1976, Journal of neurophysiology.

[46]  H. Misslisch,et al.  Canal-otolith interactions after off-vertical axis rotations I. Spatial reorientation of horizontal vestibuloocular reflex. , 2000, Journal of neurophysiology.

[47]  Dora E. Angelaki,et al.  Detection of rotating gravity signals , 1992, Biological Cybernetics.