Semi-parametric tail inference through probability-weighted moments
暂无分享,去创建一个
[1] B. Gnedenko. Sur La Distribution Limite Du Terme Maximum D'Une Serie Aleatoire , 1943 .
[2] L. Haan,et al. Residual Life Time at Great Age , 1974 .
[3] J. Pickands. Statistical Inference Using Extreme Order Statistics , 1975 .
[4] B. M. Hill,et al. A Simple General Approach to Inference About the Tail of a Distribution , 1975 .
[5] I. Weissman. Estimation of Parameters and Large Quantiles Based on the k Largest Observations , 1978 .
[6] J. R. Wallis,et al. Probability Weighted Moments: Definition and Relation to Parameters of Several Distributions Expressable in Inverse Form , 1979 .
[7] J. R. Wallis,et al. Probability weighted moments compared with some traditional techniques in estimating Gumbel Parameters and quantiles , 1979 .
[8] P. Hall. On Some Simple Estimates of an Exponent of Regular Variation , 1982 .
[9] Alan H. Welsh,et al. Adaptive Estimates of Parameters of Regular Variation , 1985 .
[10] J. R. Wallis,et al. Estimation of the generalized extreme-value distribution by the method of probability-weighted moments , 1985 .
[11] Paul Deheuvels,et al. Kernel Estimates of the Tail Index of a Distribution , 1985 .
[12] J. Hosking,et al. Parameter and quantile estimation for the generalized pareto distribution , 1987 .
[13] J. Geluk,et al. Regular variation, extensions and Tauberian theorems , 1987 .
[14] N. H. Bingham,et al. Regular variation in more general settings , 1987 .
[15] A. Dekkers,et al. Optimal choice of sample fraction in extreme-value estimation , 1993 .
[16] Ali S. Hadi,et al. Parameter and quantile estimation for the generalized extreme‐value distribution , 1994 .
[17] S. Resnick,et al. The qq-estimator and heavy tails , 1996 .
[18] Josef Steinebach,et al. ON LEAST SQUARES ESTIMATES OF AN EXPONENTIAL TAIL COEFFICIENT , 1996 .
[19] László Viharos,et al. Asymptotic normality of least-squares estimators of tail indices , 1997 .
[20] S. Csörgo,et al. Estimating the tail index , 1998 .
[21] Liang Peng,et al. Comparison of tail index estimators , 1998 .
[22] M. Gomes,et al. Generalizations of the Hill estimator – asymptotic versus finite sample behaviour☆ , 2001 .
[23] A new look at probability-weighted moments estimators , 2004 .
[24] M. Gomes,et al. Revisiting the Role of the Jackknife Methodology in the Estimation of a Positive Tail Index , 2005 .
[25] Saul Blumenthal,et al. Estimating Scale and Truncation Parameters for the Truncated Exponential Distribution with Type-I Censored Sampling , 2005 .
[26] M. Gomes,et al. Asymptotically best linear unbiased tail estimators under a second-order regular variation condition , 2005 .
[27] M. Ivette Gomes,et al. DIRECT REDUCTION OF BIAS OF THE CLASSI- CAL HILL ESTIMATOR ⁄ , 2005 .
[28] L. Haan,et al. Extreme value theory : an introduction , 2006 .
[29] M. Gomes,et al. IMPROVEMENTS IN THE ESTIMATION OF A HEAVY TAIL , 2006 .
[30] M. Ivette Gomes,et al. Peaks over random threshold methodology for tail index and high quantile estimation , 2006 .
[31] M. Ivette Gomes,et al. IMPROVING SECOND ORDER REDUCED BIAS EXTREME VALUE INDEX ESTIMATION , 2007 .
[32] J. Diebolt,et al. Approximation of the distribution of excesses through a generalized probability-weighted moments method , 2007 .
[33] M. Ivette Gomes,et al. Tail index estimation for heavy‐tailed models: accommodation of bias in weighted log‐excesses , 2007 .
[34] M. Gomes,et al. Reduced‐bias tail index estimation and the jackknife methodology , 2007 .
[35] M. Ivette Gomes,et al. A Sturdy Reduced-Bias Extreme Quantile (VaR) Estimator , 2007 .
[36] J. Diebolt,et al. Asymptotic Normality of Extreme Quantile Estimators Based on the Peaks-Over-Threshold Approach , 2007 .
[37] M. Gomes,et al. Asymptotic comparison of the mixed moment and classical extreme value index estimators , 2008 .
[38] M. Ivette Gomes,et al. PORT Hill and Moment Estimators for Heavy-Tailed Models , 2008, Commun. Stat. Simul. Comput..
[39] Philippe Naveau,et al. IMPROVING PROBABILITY-WEIGHTED MOMENT METHODS FOR THE GENERALIZED EXTREME VALUE DISTRIBUTION , 2008 .
[40] M. Gomes,et al. Statistics of extremes for IID data and breakthroughs in the estimation of the extreme value index: Laurens de Haan leading contributions , 2008 .
[41] M. Gomes,et al. Tail index estimation for heavy tails: accommodation of bias in the excesses over a high threshold , 2008 .
[42] M. Ivette Gomes,et al. Semi-parametric second-order reduced-bias high quantile estimation , 2009 .