Semi-parametric tail inference through probability-weighted moments

[1]  B. Gnedenko Sur La Distribution Limite Du Terme Maximum D'Une Serie Aleatoire , 1943 .

[2]  L. Haan,et al.  Residual Life Time at Great Age , 1974 .

[3]  J. Pickands Statistical Inference Using Extreme Order Statistics , 1975 .

[4]  B. M. Hill,et al.  A Simple General Approach to Inference About the Tail of a Distribution , 1975 .

[5]  I. Weissman Estimation of Parameters and Large Quantiles Based on the k Largest Observations , 1978 .

[6]  J. R. Wallis,et al.  Probability Weighted Moments: Definition and Relation to Parameters of Several Distributions Expressable in Inverse Form , 1979 .

[7]  J. R. Wallis,et al.  Probability weighted moments compared with some traditional techniques in estimating Gumbel Parameters and quantiles , 1979 .

[8]  P. Hall On Some Simple Estimates of an Exponent of Regular Variation , 1982 .

[9]  Alan H. Welsh,et al.  Adaptive Estimates of Parameters of Regular Variation , 1985 .

[10]  J. R. Wallis,et al.  Estimation of the generalized extreme-value distribution by the method of probability-weighted moments , 1985 .

[11]  Paul Deheuvels,et al.  Kernel Estimates of the Tail Index of a Distribution , 1985 .

[12]  J. Hosking,et al.  Parameter and quantile estimation for the generalized pareto distribution , 1987 .

[13]  J. Geluk,et al.  Regular variation, extensions and Tauberian theorems , 1987 .

[14]  N. H. Bingham,et al.  Regular variation in more general settings , 1987 .

[15]  A. Dekkers,et al.  Optimal choice of sample fraction in extreme-value estimation , 1993 .

[16]  Ali S. Hadi,et al.  Parameter and quantile estimation for the generalized extreme‐value distribution , 1994 .

[17]  S. Resnick,et al.  The qq-estimator and heavy tails , 1996 .

[18]  Josef Steinebach,et al.  ON LEAST SQUARES ESTIMATES OF AN EXPONENTIAL TAIL COEFFICIENT , 1996 .

[19]  László Viharos,et al.  Asymptotic normality of least-squares estimators of tail indices , 1997 .

[20]  S. Csörgo,et al.  Estimating the tail index , 1998 .

[21]  Liang Peng,et al.  Comparison of tail index estimators , 1998 .

[22]  M. Gomes,et al.  Generalizations of the Hill estimator – asymptotic versus finite sample behaviour☆ , 2001 .

[23]  A new look at probability-weighted moments estimators , 2004 .

[24]  M. Gomes,et al.  Revisiting the Role of the Jackknife Methodology in the Estimation of a Positive Tail Index , 2005 .

[25]  Saul Blumenthal,et al.  Estimating Scale and Truncation Parameters for the Truncated Exponential Distribution with Type-I Censored Sampling , 2005 .

[26]  M. Gomes,et al.  Asymptotically best linear unbiased tail estimators under a second-order regular variation condition , 2005 .

[27]  M. Ivette Gomes,et al.  DIRECT REDUCTION OF BIAS OF THE CLASSI- CAL HILL ESTIMATOR ⁄ , 2005 .

[28]  L. Haan,et al.  Extreme value theory : an introduction , 2006 .

[29]  M. Gomes,et al.  IMPROVEMENTS IN THE ESTIMATION OF A HEAVY TAIL , 2006 .

[30]  M. Ivette Gomes,et al.  Peaks over random threshold methodology for tail index and high quantile estimation , 2006 .

[31]  M. Ivette Gomes,et al.  IMPROVING SECOND ORDER REDUCED BIAS EXTREME VALUE INDEX ESTIMATION , 2007 .

[32]  J. Diebolt,et al.  Approximation of the distribution of excesses through a generalized probability-weighted moments method , 2007 .

[33]  M. Ivette Gomes,et al.  Tail index estimation for heavy‐tailed models: accommodation of bias in weighted log‐excesses , 2007 .

[34]  M. Gomes,et al.  Reduced‐bias tail index estimation and the jackknife methodology , 2007 .

[35]  M. Ivette Gomes,et al.  A Sturdy Reduced-Bias Extreme Quantile (VaR) Estimator , 2007 .

[36]  J. Diebolt,et al.  Asymptotic Normality of Extreme Quantile Estimators Based on the Peaks-Over-Threshold Approach , 2007 .

[37]  M. Gomes,et al.  Asymptotic comparison of the mixed moment and classical extreme value index estimators , 2008 .

[38]  M. Ivette Gomes,et al.  PORT Hill and Moment Estimators for Heavy-Tailed Models , 2008, Commun. Stat. Simul. Comput..

[39]  Philippe Naveau,et al.  IMPROVING PROBABILITY-WEIGHTED MOMENT METHODS FOR THE GENERALIZED EXTREME VALUE DISTRIBUTION , 2008 .

[40]  M. Gomes,et al.  Statistics of extremes for IID data and breakthroughs in the estimation of the extreme value index: Laurens de Haan leading contributions , 2008 .

[41]  M. Gomes,et al.  Tail index estimation for heavy tails: accommodation of bias in the excesses over a high threshold , 2008 .

[42]  M. Ivette Gomes,et al.  Semi-parametric second-order reduced-bias high quantile estimation , 2009 .