Adaptation in a VLSI model of a neuron

We have designed, fabricated, and tested an analog very large-scale integrated (VLSI) circuit model of a biological neuron that implements self-adaptation of its parameters. We show that the addition of this self-adaptation to our model neuron can facilitate: (1) single parameter control over a multiparameter system; (2) stability of the system to fluctuations in parameters; and (3) coordinated modulation of parameters to achieve a desired behavior.

[1]  Carver Mead,et al.  Analog VLSI and neural systems , 1989 .

[2]  R. Harris-Warrick,et al.  Modulation of neural networks for behavior. , 1991, Annual review of neuroscience.

[3]  R. Douglas,et al.  A silicon neuron , 1991, Nature.

[4]  L. F. Abbott,et al.  Analysis of Neuron Models with Dynamically Regulated Conductances , 1993, Neural Computation.

[5]  Paul E. Hasler,et al.  A high-resolution non-volatile analog memory cell , 1995, Proceedings of ISCAS'95 - International Symposium on Circuits and Systems.

[6]  Carver A. Mead,et al.  A single-transistor silicon synapse , 1996 .

[7]  Stephen P. DeWeerth,et al.  Analogue VLSI Morris-Lecar neuron , 1997 .

[8]  M. Simoni,et al.  Variable linear-range subthreshold OTA , 1997 .

[9]  G. N. Patel,et al.  Analog VLSI model of the leech heartbeat elemental oscillator , 1998 .