Conditional extragradient algorithms for solving variational inequalities

In this paper, we generalize the classical extragradient algorithm for solving variational inequality problems by utilizing nonzero normal vectors of the feasible set. In particular, conceptual algorithms are proposed with two different linesearchs. We then establish convergence results for these algorithms under mild assumptions. Our study suggests that nonzero normal vectors may significantly improve convergence if chosen appropriately.

[1]  R. Díaz Millán,et al.  A Direct Splitting Method for Nonsmooth Variational Inequalities , 2014, J. Optim. Theory Appl..

[2]  R. Díaz Millán,et al.  A relaxed-projection splitting algorithm for variational inequalities in Hilbert spaces , 2013, J. Glob. Optim..

[3]  J. Y. Bello Cruz,et al.  An explicit algorithm for monotone variational inequalities , 2012 .

[4]  José Yunier Bello Cruz,et al.  A Strongly Convergent Method for Nonsmooth Convex Minimization in Hilbert Spaces , 2011 .

[5]  Heinz H. Bauschke,et al.  Convex Analysis and Monotone Operator Theory in Hilbert Spaces , 2011, CMS Books in Mathematics.

[6]  Yair Censor,et al.  The Subgradient Extragradient Method for Solving Variational Inequalities in Hilbert Space , 2011, J. Optim. Theory Appl..

[7]  Alfredo N. Iusem,et al.  Convergence of direct methods for paramonotone variational inequalities , 2010, Comput. Optim. Appl..

[8]  Antonio Frangioni,et al.  Convergence Analysis of Deflected Conditional Approximate Subgradient Methods , 2009, SIAM J. Optim..

[9]  J. Y. Bello Cruz,et al.  A Strongly Convergent Direct Method for Monotone Variational Inequalities in Hilbert Spaces , 2009 .

[10]  Marc Teboulle,et al.  Interior projection-like methods for monotone variational inequalities , 2005, Math. Program..

[11]  Regina Sandra Burachik,et al.  An Outer Approximation Method for the Variational Inequality Problem , 2005, SIAM J. Control. Optim..

[12]  I. Konnov Combined Relaxation Methods for Variational Inequalities , 2000 .

[13]  Michael C. Ferris,et al.  Engineering and Economic Applications of Complementarity Problems , 1997, SIAM Rev..

[14]  I. Konnov A Class of Combined Iterative Methods for Solving Variational Inequalities , 1997 .

[15]  P. Tseng,et al.  Modified Projection-Type Methods for Monotone Variational Inequalities , 1996 .

[16]  Heinz H. Bauschke,et al.  On Projection Algorithms for Solving Convex Feasibility Problems , 1996, SIAM Rev..

[17]  M. Patriksson,et al.  Conditional subgradient optimization -- Theory and applications , 1996 .

[18]  Marc Teboulle,et al.  Entropy-Like Proximal Methods in Convex Programming , 1994, Math. Oper. Res..

[19]  Patrick T. Harker,et al.  Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications , 1990, Math. Program..

[20]  E. Khobotov Modification of the extra-gradient method for solving variational inequalities and certain optimization problems , 1989 .

[21]  F. Browder Convergence theorems for sequences of nonlinear operators in Banach spaces , 1967 .

[22]  G. Stampacchia,et al.  On some non-linear elliptic differential-functional equations , 1966 .

[23]  Benjamin Pfaff,et al.  Perturbation Analysis Of Optimization Problems , 2016 .

[24]  R. Díaz Millán,et al.  A variant of forward-backward splitting method for the sum of two monotone operators with a new search strategy , 2015 .

[25]  A. Iusem,et al.  Set-valued mappings and enlargements of monotone operators , 2008 .

[26]  F. Facchinei,et al.  Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .

[27]  M. Solodov,et al.  Forcing strong convergence of proximal point iterations in a Hilbert space , 2000, Math. Program..

[28]  Igor V. Konnov,et al.  A combined relaxation method for variational inequalities with nonlinear constraints , 1998, Math. Program..

[29]  Paul Tseng,et al.  A Modified Forward-backward Splitting Method for Maximal Monotone Mappings 1 , 1998 .

[30]  A. Iusem,et al.  A variant of korpelevich’s method for variational inequalities with a new search strategy , 1997 .

[31]  D. Kinderlehrer,et al.  An introduction to variational inequalities and their applications , 1980 .

[32]  G. M. Korpelevich The extragradient method for finding saddle points and other problems , 1976 .

[33]  E. H. Zarantonello Projections on Convex Sets in Hilbert Space and Spectral Theory: Part I. Projections on Convex Sets: Part II. Spectral Theory , 1971 .