Recognizability for sequences of morphisms

We investigate different notions of recognizability for a free monoid morphism $\unicode[STIX]{x1D70E}:{\mathcal{A}}^{\ast }\rightarrow {\mathcal{B}}^{\ast }$ . Full recognizability occurs when each (aperiodic) point in ${\mathcal{B}}^{\mathbb{Z}}$ admits at most one tiling with words $\unicode[STIX]{x1D70E}(a)$ , $a\in {\mathcal{A}}$ . This is stronger than the classical notion of recognizability of a substitution $\unicode[STIX]{x1D70E}:{\mathcal{A}}^{\ast }\rightarrow {\mathcal{A}}^{\ast }$ , where the tiling must be compatible with the language of the substitution. We show that if $|{\mathcal{A}}|=2$ , or if $\unicode[STIX]{x1D70E}$ ’s incidence matrix has rank $|{\mathcal{A}}|$ , or if $\unicode[STIX]{x1D70E}$ is permutative, then $\unicode[STIX]{x1D70E}$ is fully recognizable. Next we investigate the classical notion of recognizability and improve earlier results of Mossé [Puissances de mots et reconnaissabilité des points fixes d’une substitution. Theoret. Comput. Sci. 99(2) (1992), 327–334] and Bezuglyi et al [Aperiodic substitution systems and their Bratteli diagrams. Ergod. Th. & Dynam. Sys. 29(1) (2009), 37–72], by showing that any substitution is recognizable for aperiodic points in its substitutive shift. Finally we define recognizability and also eventual recognizability for sequences of morphisms which define an $S$ -adic shift. We prove that a sequence of morphisms on alphabets of bounded size, such that compositions of consecutive morphisms are growing on all letters, is eventually recognizable for aperiodic points. We provide examples of eventually recognizable, but not recognizable, sequences of morphisms, and sequences of morphisms which are not eventually recognizable. As an application, for a recognizable sequence of morphisms, we obtain an almost everywhere bijective correspondence between the $S$ -adic shift it generates, and the measurable Bratteli–Vershik dynamical system that it defines.

[1]  A. Siegel,et al.  Automate des pr'efixes-suffixes associ'e ` a une substitution primitive , 1999 .

[2]  S. Ferenczi Systems of finite rank , 1997 .

[3]  Julien Leroy,et al.  S -adic conjecture and Bratteli diagrams , 2012, 1210.1311.

[4]  S. Bezuglyi,et al.  Aperiodic substitution systems and their Bratteli diagrams , 2007, Ergodic Theory and Dynamical Systems.

[5]  Sébastien Ferenczi,et al.  Rank and symbolic complexity , 1996, Ergodic Theory and Dynamical Systems.

[6]  Boris Solomyak,et al.  Nonperiodicity implies unique composition for self-similar translationally finite Tilings , 1998, Discret. Comput. Geom..

[7]  V. Berthé,et al.  Multidimensional Euclidean Algorithms, Numeration and Substitutions , 2011, Integers.

[8]  Anatoly M. Vershik,et al.  Adic models of ergodic transformations, spectral theory, substitutions, and related topics , 1992 .

[9]  I. Putnam,et al.  Topological invariants for substitution tilings and their associated $C^\ast$-algebras , 1998, Ergodic Theory and Dynamical Systems.

[10]  Sébastien Ferenczi,et al.  Imbalances in Arnoux-Rauzy sequences , 2000 .

[11]  H. Wilf,et al.  Uniqueness theorems for periodic functions , 1965 .

[12]  Fabien Durand,et al.  Corrigendum and addendum to ‘Linearly recurrent subshifts have a finite number of non-periodic factors’ , 2003, Ergodic Theory and Dynamical Systems.

[13]  Stefano Marmi,et al.  Hölder Regularity of the Solutions of the Cohomological Equation for Roth Type Interval Exchange Maps , 2004, 1407.1776.

[14]  Sébastien Ferenczi,et al.  Weak mixing and eigenvalues for Arnoux-Rauzy sequences , 2008 .

[15]  Gérard Rauzy,et al.  Représentation géométrique de suites de complexité $2n+1$ , 1991 .

[16]  Wolfgang Steiner,et al.  Geometry, dynamics, and arithmetic of $S$-adic shifts , 2014, Annales de l'Institut Fourier.

[17]  Anton Zorich,et al.  Finite Gauss measure on the space of interval exchange transformations , 1996 .

[18]  Terrence M. Adams,et al.  Constructive symbolic presentations of rank one measure-preserving systems , 2016, 1610.09927.

[19]  C. Radin,et al.  Conjugacies for Tiling Dynamical Systems , 2003, math/0307259.

[20]  Finite-rank Bratteli-Vershik diagrams are expansive—a new proof , 2014, 1411.3371.

[21]  Alejandro Maass,et al.  Finite-rank Bratteli–Vershik diagrams are expansive , 2008, Ergodic Theory and Dynamical Systems.

[22]  Julien Leroy,et al.  The constant of recognizability is computable for primitive morphisms , 2016, J. Integer Seq..

[23]  Filippo Mignosi,et al.  If a D0L Language is k-Power Free then it is Circular , 1993, ICALP.

[24]  Pierre Arnoux,et al.  THE SCENERY FLOW FOR GEOMETRIC STRUCTURES ON THE TORUS: THE LINEAR SETTING , 2001 .

[25]  Brigitte Mosse,et al.  Properties of words and recognizability of fixed points of a substitution , 1992 .

[26]  Bratteli diagrams where random orders are imperfect , 2014, 1407.3496.

[28]  M. Queffélec Substitution dynamical systems, spectral analysis , 1987 .

[29]  Sébastien Ferenczi,et al.  Interactions between dynamics, arithmetics and combinatorics: the good, the bad, and the ugly , 2005 .

[30]  M. Crabb,et al.  Finiteness and recognizability problems for substitution maps on two symbols , 2010 .

[31]  A. Maass,et al.  On automorphism groups of low complexity subshifts , 2015, Ergodic Theory and Dynamical Systems.

[32]  J. Almeida,et al.  Presentations of Schützenberger groups of minimal subshifts , 2010, 1001.1475.

[33]  MULTIDIMENSIONAL EFFECTIVE S-ADIC SUBSHIFTS ARE SOFIC , 2014 .

[34]  Karel Klouda,et al.  Characterization of circular D0L-systems , 2019, Theor. Comput. Sci..

[35]  A. Vershik,et al.  A theorem on the Markov periodic approximation in ergodic theory , 1985 .

[36]  Julien Cassaigne An Algorithm to Test if a Given Circular HDOL-Language Avoids a Pattern , 1994, IFIP Congress.

[37]  J. Emme Thermodynamic formalism and $k$-bonacci substitutions , 2016, 1602.08340.

[38]  Albert M. Fisher,et al.  NONSTATIONARY MIXING AND THE UNIQUE ERGODICITY OF ADIC TRANSFORMATIONS , 2009 .

[39]  B. Mossé Reconnaissabilité des substitutions et complexité des suites automatiques , 1996 .

[40]  Maureen T. Carroll Geometry , 2017, MAlkahtani Mathematics.

[41]  E. Robinson,et al.  THE CECH COHOMOLOGY AND THE SPECTRUM FOR 1-DIMENSIONAL TILING SYSTEMS , 2010 .

[42]  John C. Martin,et al.  Minimal flows arising from substitutions of non-constant length , 1973, Mathematical systems theory.

[43]  K. Petersen,et al.  Dynamical properties of some adic systems with arbitrary orderings , 2015, Ergodic Theory and Dynamical Systems.

[44]  Dominique Perrin,et al.  Maximal bifix decoding , 2013, Discret. Math..

[45]  P. Boyland,et al.  Geometric representation of the infimax S-adic family , 2016, 1603.09726.

[46]  Bernard Host,et al.  Valeurs propres des systèmes dynamiques définis par des substitutions de longueur variable , 1986, Ergodic Theory and Dynamical Systems.

[47]  Fabien Durand,et al.  Linearly recurrent subshifts have a finite number of non-periodic subshift factors , 2000, Ergodic Theory and Dynamical Systems.

[48]  Val'erie Berth'e,et al.  Beyond substitutive dynamical systems: S-adic expansions , 2013, 1309.3960.

[49]  Brigitte Mossé,et al.  Puissances de mots et reconnaissabilité des point fixes d'une substitution , 1992, Theor. Comput. Sci..

[50]  B. Solomyak,et al.  Invariant measures on stationary Bratteli diagrams , 2008, Ergodic Theory and Dynamical Systems.

[51]  Christian F. Skau,et al.  Substitutional dynamical systems, Bratteli diagrams and dimension groups , 1999, Ergodic Theory and Dynamical Systems.

[52]  Natalie Priebe Frank,et al.  Fusion: a general framework for hierarchical tilings of Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{R }^ , 2011, Geometriae Dedicata.

[53]  K. Medynets Cantor aperiodic systems and Bratteli diagrams , 2006 .

[54]  A. Siegel,et al.  Geometric representation of substitutions of Pisot type , 2001 .