Morphological patterns in the developing vertebrate retina

[1]  SC McLoon,et al.  A monoclonal antibody that distinguishes between temporal and nasal retinal axons , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[2]  U. Dräger,et al.  A positional marker for the dorsal embryonic retina is homologous to the high-affinity laminin receptor. , 1990, Development.

[3]  G. Schoenwolf,et al.  Mechanisms of neurulation: traditional viewpoint and recent advances. , 1990, Development.

[4]  S. Fraser,et al.  Segmentation in the chick embryo hindbrain is defined by cell lineage restrictions , 1990, Nature.

[5]  R. Keynes,et al.  Segmentation and the origin of regional diversity in the vertebrate central nervous system , 1990, Neuron.

[6]  J Walter,et al.  Recognition of position-specific properties of tectal cell membranes by retinal axons in vitro. , 1987, Development.

[7]  D. Morse,et al.  Neuroectoderm of the early embryonic rat eye. Scanning electron microscopy. , 1984, Investigative ophthalmology & visual science.

[8]  Uli Schwarz,et al.  Preferential adhesion of tectal membranes to anterior embryonic chick retina neurites , 1981, Nature.

[9]  M Nirenberg,et al.  A topographic gradient of molecules in retina can be used to identify neuron position. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[10]  S. Goldberg Polarization of the avian retina. Ocular transplantation studies , 1976, The Journal of comparative neurology.

[11]  K. Rock,et al.  A gradient of adhesive specificity in developing avian retina. , 1976, Proceedings of the National Academy of Sciences of the United States of America.

[12]  W. Cowan,et al.  The specification of the retino‐tectal projection in the chick , 1974, The Journal of comparative neurology.

[13]  M. Jacobson Development of neuronal specificity in retinal ganglion cells of Xenopus. , 1968, Developmental biology.

[14]  R. Sperry CHEMOAFFINITY IN THE ORDERLY GROWTH OF NERVE FIBER PATTERNS AND CONNECTIONS. , 1963, Proceedings of the National Academy of Sciences of the United States of America.

[15]  L. Stone Polarization of the retina and development of vision , 1960 .

[16]  J. Hier SYSTEM OF OPHTHALMOLOGY. VOL. I. THE EYE IN EVOLUTION , 1959 .

[17]  J. Faber,et al.  Normal Table of Xenopus Laevis (Daudin) , 1958 .

[18]  V. Hamburger,et al.  A series of normal stages in the development of the chick embryo , 1951, Journal of morphology.

[19]  R. Sperry Visuomotor coordination in the newt (triturus viridescens) after regeneration of the optic nerve , 1943 .

[20]  C. Barnstable,et al.  A cell surface molecule distributed in a dorsoventral gradient in the perinatal rat retina , 1987, Nature.

[21]  R. M. Gaze The formation of nerve connections , 1970 .

[22]  Roger W. Sperry,et al.  OPTIC NERVE REGENERATION WITH RETURN OF VISION IN ANURANS , 1944 .

[23]  Henry Orr,et al.  Contribution to the embryology of the lizard; With especial reference to the central nervous system and some organs of the head; together with observations on the origin of the vertebrates , 1887 .