A Numerical Scheme for Impact Problems II: The Multidimensional Case

We consider a mechanical system with impact and n degrees of freedom, written in generalized coordinates. The system is not necessarily Lagrangian. The representative point is subject to a constraint: it must stay inside a closed set K with boundary of class C3. We assume that, at impact, the tangential component of the impulsion is conserved, while its normal coordinate is reflected and multiplied by a given coefficient of restitution e ∈ [0, 1]: the mechanically relevant notion of orthogonality is defined in terms of the local metric for the impulsions (local cotangent metric). We define a numerical scheme which enables us to approximate the solutions of the Cauchy problem: this is a generalization of the scheme presented in the companion paper [L. Paoli and M. Schatzman, SIAM J. Numer. Anal., 40 (2002), pp. 702–733]. We prove the convergence of this numerical scheme to a solution, which also yields an existence result. Without any a priori estimates, the convergence and the existence are local; with some a priori estimates, the convergence and the existence are proved on intervals depending exclusively on these estimates. The technique of proof uses a localization of the scheme close to the boundary of K; this idea is classical for a differential system studied in the framework of flows of a vector field. It is much more difficult to implement here because finite differences schemes are only approximately local: straightening the boundary creates quadratic terms which cause all the difficulties of the proof.

[1]  D. Stoianovici,et al.  A Critical Study of the Applicability of Rigid-Body Collision Theory , 1996 .

[2]  Patrick Ballard Dynamique des systèmes mécaniques discrets avec liaisons unilatérales parfaites , 1999 .

[3]  Laetitia Paoli,et al.  Mouvement à un nombre fini de degrés de liberté avec contraintes unilatérales: cas avec perte d'énergie , 1993 .

[4]  Danilo Percivale,et al.  Uniqueness in the elastic bounce problem, II , 1985 .

[5]  Giuseppe Buttazzo,et al.  On the approximation of the elastic bounce problem on Riemannian manifolds , 1983 .

[6]  Michele Carriero,et al.  Uniqueness of the one-dimensional bounce problem as a generic property in , 1980 .

[7]  Mongi Mabrouk Liaisons unilatérales et chocs élastiques quelconques: un résultat d'existence , 1998 .

[8]  Laetitia Paoli,et al.  A Numerical Scheme for Impact Problems I: The One-Dimensional Case , 2002, SIAM J. Numer. Anal..

[9]  M. Schatzman Uniqueness and continuous dependence on data for one-dimensional impact problems , 1998 .

[10]  Laetitia Paoli,et al.  Theoretical and Numerical Study for a Model of Vibrations with Unilateral Constraints , 1995 .

[11]  Laetitia Paoli,et al.  Vibrations avec contraintes unilatérales et perte d'énergie aux impacts, en dimension finie , 1993 .

[12]  Aldo Bressan Questioni di regolarità e di unicità del moto in presenza di vincoli olonomi unilaterali , 1959 .

[13]  Danilo Percivale Bounce problem with weak hypotheses of regularity , 1986 .

[14]  Laetitia Paoli,et al.  A numerical scheme for impact problems , 1999 .

[15]  Laetitia Paoli Analyse numérique de vibrations avec contraintes unilatérales , 1993 .

[16]  M. Mabrouk A unified variational model for the dynamics of perfect unilateral constraints , 1998 .

[17]  M. Schatzman A class of nonlinear differential equations of second order in time , 1978 .