Dynamic causal modelling of seizure activity in a rat model

Abstract This paper presents a physiological account of seizure activity and its evolution over time using a rat model of induced epilepsy. We analyse spectral activity recorded in the hippocampi of three rats who received kainic acid injections in the right hippocampus. We use dynamic causal modelling of seizure activity and Bayesian model reduction to identify the key synaptic and connectivity parameters that underlie seizure onset. Using recent advances in hierarchical modelling (parametric empirical Bayes), we characterise seizure onset in terms of slow fluctuations in synaptic excitability of specific neuronal populations. Our results suggest differences in the pathophysiology – of seizure activity in the lesioned versus the non‐lesioned hippocampus – with pronounced changes in excitation‐inhibition balance and temporal summation on the lesioned side. In particular, our analyses suggest that marked reductions in the synaptic time constant of the deep pyramidal cells and the self‐inhibition of inhibitory interneurons (in the lesioned hippocampus) are sufficient to explain changes in spectral activity. Although these synaptic changes are consistent over rats, the resulting electrophysiological phenotype can be quite diverse.

[1]  Brian Litt,et al.  Modeling the complex dynamics and changing correlations of epileptic events , 2014, Artif. Intell..

[2]  C. Schevon,et al.  How inhibition influences seizure propagation , 2013, Neuropharmacology.

[3]  W. Löscher,et al.  Inter-individual variation in the effect of antiepileptic drugs in the intrahippocampal kainate model of mesial temporal lobe epilepsy in mice , 2015, Neuropharmacology.

[4]  S. Spencer,et al.  Outcomes of epilepsy surgery in adults and children , 2008, The Lancet Neurology.

[5]  R. Desimone,et al.  Laminar differences in gamma and alpha coherence in the ventral stream , 2011, Proceedings of the National Academy of Sciences.

[6]  M. Duchowny,et al.  Bayesian Network and Mechanistic Hierarchical Structure Modeling of Increased likelihood of Developing Intractable Childhood Epilepsy from the Combined Effect of mtDNA Variants, Oxidative Damage, and Copy Number , 2014, Journal of Molecular Neuroscience.

[7]  Brian Litt,et al.  A stochastic framework for evaluating seizure prediction algorithms using hidden Markov models. , 2007, Journal of neurophysiology.

[8]  Boris C. Bernhardt,et al.  Network analysis for a network disorder: The emerging role of graph theory in the study of epilepsy , 2015, Epilepsy & Behavior.

[9]  S. Finkbeiner,et al.  Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling. , 1990, Science.

[10]  Karl J. Friston,et al.  Canonical Microcircuits for Predictive Coding , 2012, Neuron.

[11]  J. Buhmann,et al.  Dissecting psychiatric spectrum disorders by generative embedding☆☆☆ , 2013, NeuroImage: Clinical.

[12]  Miles A. Whittington,et al.  Top-Down Beta Rhythms Support Selective Attention via Interlaminar Interaction: A Model , 2013, PLoS Comput. Biol..

[13]  A. Berg,et al.  The natural history of mesial temporal lobe epilepsy , 2008, Current opinion in neurology.

[14]  Carlos E. M. Tassinari,et al.  Glossary of Descriptive Terminology for Ictal Semiology: Report of the ILAE Task Force on Classification and Terminology , 2001, Epilepsia.

[15]  P. Buckmaster,et al.  Axon Sprouting in a Model of Temporal Lobe Epilepsy Creates a Predominantly Excitatory Feedback Circuit , 2002, The Journal of Neuroscience.

[16]  W. Penny,et al.  Reading Front to Back: MEG Evidence for Early Feedback Effects During Word Recognition , 2012, Cerebral cortex.

[17]  Christoph M. Michel,et al.  Mapping Epileptic Activity: Sources or Networks for the Clinicians? , 2014, Front. Neurol..

[18]  I. Fried,et al.  Early surgical therapy for drug-resistant temporal lobe epilepsy: a randomized trial. , 2012, JAMA.

[19]  Karl J. Friston,et al.  Empirical Bayes for Group (DCM) Studies: A Reproducibility Study , 2015, Front. Hum. Neurosci..

[20]  William D. Penny,et al.  Variational Bayes for generalized autoregressive models , 2002, IEEE Trans. Signal Process..

[21]  Jan A Gorter,et al.  Epilepsy as a dynamic disease of neuronal networks. , 2012, Handbook of clinical neurology.

[22]  L. Colgin,et al.  Theta–gamma Coupling in the Entorhinal–hippocampal System This Review Comes from a Themed Issue on Brain Rhythms and Dynamic Coordination Sciencedirect , 2022 .

[23]  John R. Terry,et al.  A unifying explanation of primary generalized seizures through nonlinear brain modeling and bifurcation analysis. , 2006, Cerebral cortex.

[24]  S. Schiff,et al.  The influence of sodium and potassium dynamics on excitability, seizures, and the stability of persistent states: II. Network and glial dynamics , 2008, Journal of Computational Neuroscience.

[25]  Z. Chi,et al.  Abnormal Expression of Synaptophysin, SNAP-25, and Synaptotagmin 1 in the Hippocampus of Kainic Acid-Exposed Rats with Behavioral Deficits , 2014, Cellular and Molecular Neurobiology.

[26]  Karl J. Friston,et al.  Dynamic causal modelling of electrographic seizure activity using Bayesian belief updating , 2016, NeuroImage.

[27]  Raymond J. Dolan,et al.  Dynamic causal models of steady-state responses , 2009, NeuroImage.

[28]  Raymond J. Dolan,et al.  Consistent spectral predictors for dynamic causal models of steady-state responses , 2011, NeuroImage.

[29]  D. Leopold,et al.  Layer-Specific Entrainment of Gamma-Band Neural Activity by the Alpha Rhythm in Monkey Visual Cortex , 2012, Current Biology.

[30]  C. Koch,et al.  A brief history of time (constants). , 1996, Cerebral cortex.

[31]  Karl J. Friston,et al.  Dynamic Causal Models and Physiological Inference: A Validation Study Using Isoflurane Anaesthesia in Rodents , 2011, PloS one.

[32]  Michael Breakspear,et al.  Whole-brain analytic measures of network communication reveal increased structure-function correlation in right temporal lobe epilepsy , 2016, NeuroImage: Clinical.

[33]  M. Roghani,et al.  Rosmarinic acid exerts a neuroprotective effect in the kainate rat model of temporal lobe epilepsy: Underlying mechanisms , 2015, Pharmaceutical biology.

[34]  Steven J. Schiff,et al.  Assimilating Seizure Dynamics , 2010, PLoS Comput. Biol..

[35]  G. Somjen,et al.  Simulated seizures and spreading depression in a neuron model incorporating interstitial space and ion concentrations. , 2000, Journal of neurophysiology.

[36]  S. Spencer Neural Networks in Human Epilepsy: Evidence of and Implications for Treatment , 2002, Epilepsia.

[37]  Klaus Lehnertz,et al.  How important is the seizure onset zone for seizure dynamics? , 2014, Seizure.

[38]  Karl J. Friston,et al.  Neural masses and fields in dynamic causal modeling , 2013, Front. Comput. Neurosci..

[39]  Steven J Schiff,et al.  Oxygen and seizure dynamics: I. Experiments. , 2014, Journal of neurophysiology.

[40]  Alexandre Hyafil,et al.  Neural Cross-Frequency Coupling: Connecting Architectures, Mechanisms, and Functions , 2015, Trends in Neurosciences.

[41]  F. Wendling Computational models of epileptic activity: a bridge between observation and pathophysiological interpretation , 2008, Expert review of neurotherapeutics.

[42]  Adeel Razi,et al.  Bayesian model reduction and empirical Bayes for group (DCM) studies , 2016, NeuroImage.

[43]  M. Scanziani,et al.  How Inhibition Shapes Cortical Activity , 2011, Neuron.

[44]  Marcel van Gerven,et al.  Measuring directionality between neuronal oscillations of different frequencies , 2015, NeuroImage.

[45]  Biyu J. He,et al.  Impaired and facilitated functional networks in temporal lobe epilepsy☆ , 2013, NeuroImage: Clinical.

[46]  S. Schiff,et al.  Unification of Neuronal Spikes, Seizures, and Spreading Depression , 2014, The Journal of Neuroscience.

[47]  Babak Nadjar Araabi,et al.  Variational Bayesian learning for Gaussian mixture HMM in seizure prediction based on long term EEG of epileptic rats , 2014, 2014 21th Iranian Conference on Biomedical Engineering (ICBME).

[48]  Nathalie Jette,et al.  Systematic review and meta-analysis of standard vs selective temporal lobe epilepsy surgery , 2013, Neurology.

[49]  W. Löscher,et al.  The AMPA receptor antagonist NBQX exerts anti-seizure but not antiepileptogenic effects in the intrahippocampal kainate mouse model of mesial temporal lobe epilepsy , 2015, Neuropharmacology.

[50]  J B Ranck,et al.  Potassium accumulation in interstitial space during epileptiform seizures. , 1970, Experimental neurology.

[51]  A. Draguhn,et al.  Rapid plasticity at inhibitory and excitatory synapses in the hippocampus induced by ictal epileptiform discharges , 2009, The European journal of neuroscience.

[52]  D. McCormick,et al.  On the cellular and network bases of epileptic seizures. , 2001, Annual review of physiology.

[53]  John R. Terry,et al.  A phenomenological model of seizure initiation suggests network structure may explain seizure frequency in idiopathic generalised epilepsy , 2012, Journal of mathematical neuroscience.

[54]  W. Hauser,et al.  Comment on Epileptic Seizures and Epilepsy: Definitions Proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE) , 2005, Epilepsia.

[55]  S. Haykin,et al.  Cubature Kalman Filters , 2009, IEEE Transactions on Automatic Control.

[56]  C. Elger,et al.  Epileptic Seizures and Epilepsy: Definitions Proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE) , 2005, Epilepsia.

[57]  G. Carmignoto,et al.  Astrocyte control of synaptic transmission and neurovascular coupling. , 2006, Physiological reviews.

[58]  B. Grafstein,et al.  Mechanism of spreading cortical depression. , 1956, Journal of neurophysiology.

[59]  D. Madison,et al.  Epileptic seizures resulting from acute cerebral anoxia , 1970, Journal of neurology, neurosurgery, and psychiatry.

[60]  Kaspar Anton Schindler,et al.  Self-organised transients in a neural mass model of epileptogenic tissue dynamics , 2012, NeuroImage.

[61]  Adriano B. L. Tort,et al.  OLM interneurons differentially modulate CA3 and entorhinal inputs to hippocampal CA1 neurons , 2012, Nature Neuroscience.

[62]  J. Bellanger,et al.  Interictal to Ictal Transition in Human Temporal Lobe Epilepsy: Insights From a Computational Model of Intracerebral EEG , 2005, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[63]  W. Stacey,et al.  On the nature of seizure dynamics. , 2014, Brain : a journal of neurology.

[64]  Karl J. Friston,et al.  DCM for complex-valued data: Cross-spectra, coherence and phase-delays , 2012, NeuroImage.

[65]  R. Raedt,et al.  Seizures in the intrahippocampal kainic acid epilepsy model: characterization using long‐term video‐EEG monitoring in the rat , 2009, Acta neurologica Scandinavica.

[66]  Karl J. Friston,et al.  Tracking slow modulations in synaptic gain using dynamic causal modelling: Validation in epilepsy , 2015, NeuroImage.

[67]  Karl J. Friston,et al.  Losing Control Under Ketamine: Suppressed Cortico-Hippocampal Drive Following Acute Ketamine in Rats , 2015, Neuropsychopharmacology.

[68]  Visakan Kadirkamanathan,et al.  Model-based estimation of intra-cortical connectivity using electrophysiological data , 2015, NeuroImage.

[69]  Karl J. Friston,et al.  Characterising seizures in anti-NMDA-receptor encephalitis with dynamic causal modelling , 2015, NeuroImage.