Intraperitoneal insulin delivery provides superior glycaemic regulation to subcutaneous insulin delivery in model predictive control‐based fully‐automated artificial pancreas in patients with type 1 diabetes: a pilot study

To compare intraperitoneal (IP) to subcutaneous (SC) insulin delivery in an artificial pancreas (AP).

[1]  Benyamin Grosman,et al.  Day and Night Closed-Loop Control Using the Integrated Medtronic Hybrid Closed-Loop System in Type 1 Diabetes at Diabetes Camp , 2015, Diabetes Care.

[2]  E. Renard,et al.  Implantable insulin pumps: an effective option with restricted dissemination. , 2014, The lancet. Diabetes & endocrinology.

[3]  R. Gans,et al.  Intraperitoneal insulin infusion: treatment option for type 1 diabetes resulting in beneficial endocrine effects beyond glycaemia , 2014, Clinical endocrinology.

[4]  Eric Renard,et al.  Closed loop insulin delivery using implanted insulin pumps and sensors in type 1 diabetic patients , 2006 .

[5]  R. Hovorka,et al.  Coming of age: the artificial pancreas for type 1 diabetes , 2016, Diabetologia.

[6]  Lauren M. Huyett,et al.  Closed-Loop Artificial Pancreas Systems: Engineering the Algorithms , 2014, Diabetes Care.

[7]  E. Renard Analysis of “A New Optimized Percutaneous Access System for CIPII” , 2017, Journal of diabetes science and technology.

[8]  Eyal Dassau,et al.  Design and Evaluation of a Robust PID Controller for a Fully Implantable Artificial Pancreas , 2015, Industrial & engineering chemistry research.

[9]  F. Doyle,et al.  Design of the Health Monitoring System for the Artificial Pancreas: Low Glucose Prediction Module , 2012, Journal of diabetes science and technology.

[10]  D. Nathan,et al.  Postprandial insulin profiles with implantable pump therapy may explain decreased frequency of severe hypoglycemia, compared with intensive subcutaneous regimens, in insulin-dependent diabetes mellitus patients. , 1996, The American journal of medicine.

[11]  Eyal Dassau,et al.  Clinical evaluation of an automated artificial pancreas using zone-model predictive control and health monitoring system. , 2014, Diabetes technology & therapeutics.

[12]  L. Magni,et al.  Multicenter outpatient dinner/overnight reduction of hypoglycemia and increased time of glucose in target with a wearable artificial pancreas using modular model predictive control in adults with type 1 diabetes , 2015, Diabetes, obesity & metabolism.

[13]  Howard C. Zisser,et al.  Outcome Measures for Artificial Pancreas Clinical Trials: A Consensus Report , 2016, Diabetes Care.

[14]  Ahmad Haidar,et al.  Comparison of dual-hormone artificial pancreas, single-hormone artificial pancreas, and conventional insulin pump therapy for glycaemic control in patients with type 1 diabetes: an open-label randomised controlled crossover trial. , 2015, The lancet. Diabetes & endocrinology.

[15]  E. Renard Clinical experience with an implanted closed-loop insulin delivery system. , 2008, Arquivos brasileiros de endocrinologia e metabologia.

[16]  Eyal Dassau,et al.  Design and in silico evaluation of an intraperitoneal-subcutaneous (IP-SC) artificial pancreas , 2014, Comput. Chem. Eng..

[17]  C. C. Palerm,et al.  Closed-Loop Insulin Delivery Using a Subcutaneous Glucose Sensor and Intraperitoneal Insulin Delivery , 2009, Diabetes Care.

[18]  Eyal Dassau,et al.  Zone Model Predictive Control: A Strategy to Minimize Hyper- and Hypoglycemic Events , 2010, Journal of diabetes science and technology.

[19]  R. Gans,et al.  Continuous intraperitoneal insulin infusion versus subcutaneous insulin therapy in the treatment of type 1 diabetes: effects on glycemic variability. , 2015, Diabetes technology & therapeutics.

[20]  J. Frystyk,et al.  Intraperitoneal insulin delivery to patients with type 1 diabetes results in higher serum IGF‐I bioactivity than continuous subcutaneous insulin infusion , 2014, Clinical endocrinology.

[21]  Lauren M. Huyett,et al.  Glucose Sensing in the Peritoneal Space Offers Faster Kinetics Than Sensing in the Subcutaneous Space , 2014, Diabetes.

[22]  R. Bergman,et al.  Determination of Portal Insulin Absorption From Peritoneum via Novel Nonisotopic Method , 1990, Diabetes.

[23]  E. Renard,et al.  Decreased Severe Hypoglycemia Frequency During Intraperitoneal Insulin Infusion Using Programmable Implantame Pumps , 1996, Diabetes Care.

[24]  R. Hovorka Continuous glucose monitoring and closed‐loop systems , 2006, Diabetic medicine : a journal of the British Diabetic Association.

[25]  Eyal Dassau,et al.  Sensitivity of the Predictive Hypoglycemia Minimizer System to the Algorithm Aggressiveness Factor , 2016, Journal of diabetes science and technology.

[26]  Dale E. Seborg,et al.  Control-Relevant Models for Glucose Control Using A Priori Patient Characteristics , 2012, IEEE Transactions on Biomedical Engineering.

[27]  O. Schnell,et al.  A New Optimized Percutaneous Access System for CIPII , 2017, Journal of diabetes science and technology.

[28]  R. Gans,et al.  Effects of intraperitoneal insulin versus subcutaneous insulin administration on sex hormone-binding globulin concentrations in patients with type 1 diabetes mellitus , 2016, Endocrine connections.

[29]  Eyal Dassau,et al.  The impact of glucose sensing dynamics on the closed-loop artificial pancreas , 2015, 2015 American Control Conference (ACC).

[30]  J. Spaan,et al.  Systematic review: continuous intraperitoneal insulin infusion with implantable insulin pumps for diabetes mellitus , 2014, Acta Diabetologica.

[31]  E. Renard,et al.  A reduction in severe hypoglycaemia in type 1 diabetes in a randomized crossover study of continuous intraperitoneal compared with subcutaneous insulin infusion , 2009, Diabetes, obesity & metabolism.