240th ENMC workshop: The involvement of skeletal muscle stem cells in the pathology of muscular dystrophies 25–27 January 2019, Hoofddorp, The Netherlands

[1]  Annemieke Aartsma-Rus,et al.  Natural disease history of the D2-mdx mouse model for Duchenne muscular dystrophy , 2019, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[2]  A. Postigo,et al.  ZEB1 protects skeletal muscle from damage and is required for its regeneration , 2019, Nature Communications.

[3]  C. Banerji,et al.  PAX7 target gene repression is a superior FSHD biomarker than DUX4 target gene activation, associating with pathological severity and identifying FSHD at the single-cell level , 2019, Human molecular genetics.

[4]  S. Preibisch,et al.  Oscillations of MyoD and Hes1 proteins regulate the maintenance of activated muscle stem cells , 2019, Genes & development.

[5]  P. Currie,et al.  RGD inhibition of itgb1 ameliorates laminin-&agr;2-deficient zebrafish fibre pathology , 2018, Human molecular genetics.

[6]  Tom H. Cheung,et al.  High-dimensional single-cell cartography reveals novel skeletal muscle resident cell populations , 2018, bioRxiv.

[7]  M. Grounds Obstacles and challenges for tissue engineering and regenerative medicine: Australian nuances , 2018, Clinical and experimental pharmacology & physiology.

[8]  Simone Severini,et al.  PAX7 target genes are globally repressed in facioscapulohumeral muscular dystrophy skeletal muscle , 2017, Nature Communications.

[9]  Annemieke Aartsma-Rus,et al.  Natural disease history of mouse models for limb girdle muscular dystrophy types 2D and 2F , 2017, PloS one.

[10]  Janice S. Lee,et al.  A defect in myoblast fusion underlies Carey-Fineman-Ziter syndrome , 2017, Nature Communications.

[11]  Shuo Lin,et al.  Linker proteins restore basement membrane and correct LAMA2-related muscular dystrophy in mice , 2017, Science Translational Medicine.

[12]  M. Rüegg,et al.  Chimeric protein repair of laminin polymerization ameliorates muscular dystrophy phenotype , 2017, The Journal of clinical investigation.

[13]  G. Pita,et al.  A POGLUT1 mutation causes a muscular dystrophy with reduced Notch signaling and satellite cell loss , 2016, EMBO molecular medicine.

[14]  Ashley L. Siegel,et al.  Asymmetric division of clonal muscle stem cells coordinates muscle regeneration in vivo , 2016, Science.

[15]  E. Ballestar,et al.  Autophagy maintains stemness by preventing senescence , 2016, Nature.

[16]  Yu Xin Wang,et al.  Dystrophin expression in muscle stem cells regulates their polarity and asymmetric division , 2015, Nature Medicine.

[17]  J. Morgan,et al.  Satellite cells from dystrophic muscle retain regenerative capacity , 2015, Stem cell research.

[18]  M. Grounds The need to more precisely define aspects of skeletal muscle regeneration. , 2014, The international journal of biochemistry & cell biology.

[19]  E. Ballestar,et al.  Geriatric muscle stem cells switch reversible quiescence into senescence , 2014, Nature.

[20]  M. Goddeeris,et al.  LARGE glycans on dystroglycan function as a tunable matrix scaffold to prevent dystrophy , 2013, Nature.

[21]  Marco Quarta,et al.  Collagen VI regulates satellite cell self-renewal and muscle regeneration , 2013, Nature Communications.

[22]  P. Currie,et al.  Epistatic dissection of laminin-receptor interactions in dystrophic zebrafish muscle. , 2012, Human molecular genetics.

[23]  Susan C. Brown,et al.  Defects in Glycosylation Impair Satellite Stem Cell Function and Niche Composition in the Muscles of the Dystrophic Largemyd Mouse , 2012, Stem cells.

[24]  H. Rahn,et al.  Colonization of the satellite cell niche by skeletal muscle progenitor cells depends on Notch signals. , 2012, Developmental cell.

[25]  Ping Huang,et al.  Myotubularin-deficient myoblasts display increased apoptosis, delayed proliferation, and poor cell engraftment. , 2012, The American journal of pathology.

[26]  F. Muntoni,et al.  Donor Satellite Cell Engraftment is Significantly Augmented When the Host Niche is Preserved and Endogenous Satellite Cells are Incapacitated , 2012, Stem cells.

[27]  L. Kunkel,et al.  Mutations in the satellite cell gene MEGF10 cause a recessive congenital myopathy with minicores , 2012, neurogenetics.

[28]  D. Castel,et al.  A Critical Requirement for Notch Signaling in Maintenance of the Quiescent Skeletal Muscle Stem Cell State , 2012, Stem cells.

[29]  Tom H. Cheung,et al.  Notch Signaling Is Necessary to Maintain Quiescence in Adult Muscle Stem Cells , 2012, Stem cells.

[30]  Colin A. Johnson,et al.  Mutations in MEGF10, a regulator of satellite cell myogenesis, cause early onset myopathy, areflexia, respiratory distress and dysphagia (EMARDD) , 2011, Nature Genetics.

[31]  A. Krol,et al.  Satellite cell loss and impaired muscle regeneration in selenoprotein N deficiency. , 2011, Human Molecular Genetics.

[32]  N. Maraldi,et al.  Autophagy is defective in collagen VI muscular dystrophies, and its reactivation rescues myofiber degeneration , 2010, Nature Medicine.

[33]  J. Morgan,et al.  Direct effects of the pathogenic mutation on satellite cell function in muscular dystrophy. , 2010, Experimental cell research.

[34]  Daniel G. Miller,et al.  A Unifying Genetic Model for Facioscapulohumeral Muscular Dystrophy , 2010, Science.

[35]  Hiroshi Yamamoto,et al.  Genetic background affects properties of satellite cells and mdx phenotypes. , 2010, The American journal of pathology.

[36]  A. Palmer,et al.  Latent TGF-beta-binding protein 4 modifies muscular dystrophy in mice. , 2009, The Journal of clinical investigation.

[37]  A. Bigot,et al.  Large CTG repeats trigger p16-dependent premature senescence in myotonic dystrophy type 1 muscle precursor cells. , 2009, The American journal of pathology.

[38]  H. Qian,et al.  DUX4, a candidate gene of facioscapulohumeral muscular dystrophy, encodes a transcriptional activator of PITX1 , 2007, Proceedings of the National Academy of Sciences.

[39]  C. Reggiani,et al.  Mitochondrial dysfunction and apoptosis in myopathic mice with collagen VI deficiency , 2003, Nature Genetics.

[40]  J. Rommens,et al.  Short GCG expansions in the PABP2 gene cause oculopharyngeal muscular dystrophy , 1998, Nature Genetics.