Auto-tuning of PID controller according to fractional-order reference model approximation for DC rotor control

This paper presents a stochastic, multi-parameters, divergence optimization method for the auto-tuning of proportional–integral–derivative (PID) controllers according to a fractional-order reference model. The study aimed to approximate the step response of the real closed-loop flight control system to the response of a theoretical reference model for a smoother and more precise flight control experience. The proposed heuristic optimization method can auto-tune a PID controller without a precise plant model. This is very advantageous when dealing with model and parameter uncertainties in real control application and practice. Experimental study confirms the reference model driven auto-tuning of the DC rotor prototype.

[1]  Huili Yu,et al.  Vision-based Navigation Frame Mapping and Planning for Collision Avoidance for Miniature Air Vehicles , 2010 .

[2]  I. Michael Ross,et al.  A review of pseudospectral optimal control: From theory to flight , 2012, Annu. Rev. Control..

[3]  Ashfaq Ahmad Mian,et al.  Autonomous takeoff and landing control for a prototype unmanned helicopter , 2010 .

[4]  Makoto Tokuda,et al.  SELF-TUNING PID CONTROLLER BASED ON CONTROL PERFORMANCE EVALUATIONS , 2010 .

[5]  Rogelio Lozano,et al.  Stabilization and nonlinear control for a novel trirotor mini-aircraft , 2009 .

[6]  Rong-Fong Fung,et al.  The self-tuning PID control in a slider–crank mechanism system by applying particle swarm optimization approach , 2006 .

[7]  Rubén Morales-Menéndez,et al.  Cost-effective supervisory control system in peripheral milling using HSM , 2010, Annu. Rev. Control..

[8]  Ulrich Schmitz,et al.  Optimal choice of horizons for predictive control by using genetic algorithms , 2003, Annu. Rev. Control..

[9]  Celaleddin Yeroglu,et al.  Classical controller design techniques for fractional order case. , 2011, ISA transactions.

[10]  Jinoh Lee,et al.  An experimental study on time delay control of actuation system of tilt rotor unmanned aerial vehicle , 2012 .

[11]  Kiho Cho,et al.  Vision-Based Autonomous Landing for Small-Scale Unmanned Rotorcraft , 2011, 2011 14th IEEE International Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing Workshops.

[12]  S. Mori,et al.  Data-Driven Skill-Based PID Control of a Pilot-Scale Helicopter Model , 2007, Second International Conference on Innovative Computing, Informatio and Control (ICICIC 2007).

[13]  Antonios Gasteratos,et al.  Stereovision-Based Algorithm for Obstacle Avoidance , 2009, ICIRA.

[14]  David Lara,et al.  Robustness margin for attitude control of a four rotor mini-rotorcraft: Case of study , 2010 .

[15]  Akbar Rahideh,et al.  Constrained output feedback model predictive control for nonlinear systems , 2012 .

[16]  Daisuke Ikeda,et al.  Design of discrete time adaptive PID control systems with parallel feedforward compensator , 2010 .

[17]  Guangjun Liu,et al.  Active Model-Based Predictive Control and Experimental Investigation on Unmanned Helicopters in Full Flight Envelope , 2013, IEEE Transactions on Control Systems Technology.

[18]  Chris J. B. Macnab,et al.  Robust adaptive control of a quadrotor helicopter , 2011 .

[19]  Carlos Silvestre,et al.  Embedded UAV model and LASER aiding techniques for inertial navigation systems , 2010 .

[20]  Jamaluddin Hishamuddin,et al.  Implementation of PID controller tuning using differential evolution and genetic algorithms , 2012 .

[21]  Jung-Hua Yang,et al.  Adaptive backstepping control for electrically driven unmanned helicopter , 2009 .

[22]  Xavier Blasco Ferragud,et al.  Controller Tuning by Means of Multi-Objective Optimization Algorithms: A Global Tuning Framework , 2013, IEEE Transactions on Control Systems Technology.

[23]  Nicolas H. Franceschini,et al.  Optic flow regulation: the key to aircraft automatic guidance , 2005, Robotics Auton. Syst..

[24]  Raffaello D'Andrea,et al.  The Distributed Flight Array , 2011 .

[25]  J. A. Tenreiro Machado,et al.  Tuning of PID Controllers Based on Bode’s Ideal Transfer Function , 2004 .

[26]  Liang Tang,et al.  From mission planning to flight control of unmanned aerial vehicles: Strategies and implementation tools , 2005, Annu. Rev. Control..

[27]  權寧住,et al.  Mechatronics , 2019, CIRP Encyclopedia of Production Engineering.

[28]  Yun Li,et al.  PID control system analysis, design, and technology , 2005, IEEE Transactions on Control Systems Technology.

[29]  Kyoung Kwan Ahn,et al.  Force control for hydraulic load simulator using self-tuning grey predictor – fuzzy PID , 2009 .

[30]  Robert Mahony,et al.  Modelling and control of a large quadrotor robot , 2010 .

[31]  R. Haber,et al.  Optimal Choice of Horizons for Predictive Control by Using Genetic Algorithms , 2003 .

[32]  JD Han,et al.  Yaw control of helicopter: an adaptive guaranteed cost control approach , 2009 .

[33]  Hairi Zamzuri,et al.  Multi-objective optimization for PID controller tuning using the Global Ranking Genetic Algorithm , 2012 .

[34]  H. W. Bode,et al.  Network analysis and feedback amplifier design , 1945 .

[35]  Kyoung Kwan Ahn,et al.  Nonlinear PID control to improve the control performance of 2 axes pneumatic artificial muscle manipulator using neural network , 2006 .