Minimum embedding of STSs into (K3+e)(K3+e)-systems

Abstract A G -design ( V , B ) is called embedded into a H -design ( V ∪ W , D ) if G is a subgraph of H and there is an injective mapping f : B → D such that B is a subgraph of f ( B ) for every B ∈ B . The purpose of this note is to determine, for each admissible v , the minimum integer n such that any K 3 -design of order v can be embedded into a ( K 3 + e ) -design of order n .

[1]  Charles J. Colbourn,et al.  Drop Cost and Wavelength Optimal Two-Period Grooming with Ratio 4 , 2010, SIAM J. Discret. Math..

[2]  Charles J. Colbourn,et al.  Minimum embedding of Steiner triple systems into (K4-e)-designs I , 2008, Discret. Math..

[3]  Salvatore Milici,et al.  Embeddings of simple maximum packings of triples with lambda even , 1995, Discret. Math..

[4]  Giovanni Lo Faro,et al.  The Doyen-Wilson theorem for kite systems , 2006, Discret. Math..

[5]  Salvatore Milici,et al.  Maximum embedding of an H(v-w, 3, 1) into a TS(v, λ) , 2010, Australas. J Comb..

[6]  Gaetano Quattrocchi,et al.  Exact embedding of two G-designs into a (G+e)-design , 2012, Discret. Math..

[7]  Zsolt Tuza,et al.  Cycle systems without 2‐colorings , 1996 .

[8]  Giovanni Lo Faro,et al.  Tight blocking sets in some maximum packings of lambdaKn , 2008, Discret. Math..

[9]  Charles J. Colbourn,et al.  Grooming for two-period optical networks , 2008 .

[10]  Mario Gionfriddo,et al.  Embedding balanced P3-designs into (balanced) P4-designs , 2008, Discret. Math..

[11]  Charles J. Colbourn,et al.  Minimum embedding of Steiner triple systems into (K4-e)-designs II , 2009, Discret. Math..

[12]  Alexander Rosa,et al.  Embedding Steiner triple systems into Steiner systems S(2, 4, v) , 2004, Discret. Math..

[13]  Antoinette Tripodi,et al.  Minimum embedding of a KS ( u , λ ) into a KS ( u + w , μ ) , 2011 .

[14]  Zsolt Tuza,et al.  Disjoint blocking sets in cycle systems , 1999, Discret. Math..

[15]  Marco Buratti,et al.  Cyclic Designs with Block Size 4 and Related Optimal Optical Orthogonal Codes , 2002, Des. Codes Cryptogr..

[16]  Antoinette Tripodi,et al.  Minimum embedding of a KS(u, lambda) into a KS(u+w, µ) , 2012, Discret. Math..

[17]  Vitaly I. Voloshin,et al.  Bicolouring Steiner systems S(2, 4, v) , 2004, Discret. Math..