Electrochemical approaches to environmental problems in the process industry

Abstract Electrochemical processes can provide valuable contributions to the protection of the environment through implementation of effluent treatment and production-integrated processes for the minimisation of waste and toxic compounds. As examples of effluent treatment, electrochemical reactors for removal of metal ions from waste water, anodic destruction of organic pollutants and new electrochemical abatement techniques for the purification of flue gases will be described. Further examples consider salt splitting by membrane techniques. As examples for production-integrated industrial processes fluidised bed electrolysis for metal recovery in the cellulose acetate production, the membrane process for industrial chlor-alkali electrolysis, and the electroreduction of dichloracetic acid are considered.

[1]  K. Jüttner,et al.  Electrochemical study of direct and indirect NO reduction with complexing agents and redox mediator , 1997 .

[2]  H. Bergmann,et al.  Experimental and theoretical studies on a new type of electrochemical reactor for waste-water treatment , 1992 .

[3]  D. Bergner Membrane cells for chlor-alkali electrolysis , 1982 .

[4]  D. Simonsson Electrochemistry for a cleaner environment , 1997 .

[5]  G. Eigenberger,et al.  Elektromembranverfahren. Teil 2: Anwendungsbeispiele , 1995 .

[6]  F. Beck,et al.  Entwicklung neuer Zellen für elektro‐organische Synthesen , 1969 .

[7]  A. Watkinson,et al.  Anodic oxidation of phenol for waste water treatment , 1980 .

[8]  J. Newman,et al.  Electrochemical Removal of Silver Ions from Photographic Fixing Solutions Using a Porous Flow‐Through Electrode , 1977 .

[9]  N. Ibl,et al.  A new cell for electrochemical processes , 1975 .

[10]  K. Scott A consideration of circulating bed electrodes for the recovery of metal from dilute solutions , 1988 .

[11]  J. R. Backhurst,et al.  A Preliminary Investigation of Fluidized Bed Electrodes , 1969 .

[12]  J. Winnick,et al.  Electrochemical Removal of H 2 S from Hot Gas Streams Nickel/Nickel‐Sulfide Cathode Performance , 1987 .

[13]  G. Kreysa Aktuelle Entwicklungslinien der elektrochemischen Prozeßtechnik , 1983 .

[14]  T. Hunger,et al.  Electrochemical oxidation of sulphite ions at graphite electrodes , 1991 .

[15]  C. Comninellis,et al.  Activation of catalyst for gas phase combustion by electrochemical pre-treatment , 1997 .

[16]  G. Kelsall,et al.  Cyanide Oxidation at Nickel Anodes II . Voltammetry and Coulometry of Systems , 1991 .

[17]  Brian E. Conway,et al.  Modern Aspects of Electrochemistry , 1974 .

[18]  M. Sudoh,et al.  EFFECT OF ANODIC AND CATHODIC REACTIONS ON OXIDATIVE DEGRADATION OF PHENOL IN AN UNDIVIDED BIPOLAR ELECTROLYZER , 1988 .

[19]  Shahed U. M. Khan,et al.  Electrochemistry of Cleaner Environments , 1972 .

[20]  Remo Guidieri Res , 1995, RES: Anthropology and Aesthetics.

[21]  S. Trasatti Electrochemistry and environment: The role of electrocatalysis☆ , 1995 .

[22]  Kang-Jen Liu,et al.  Use of bipolar membranes for generation of acid and base — an engineering and economic analysis , 1977 .

[23]  A. Storck,et al.  Mass transfer study of three-dimensional electrodes composed of stacks of nets , 1979 .

[24]  C. Comninellis,et al.  The Industrial Electrolytic Regeneration of Mn2(SO4)3 for the Oxidation of Substituted Toluene to the Corresponding Benzaldehyde , 1995, CHIMIA.

[25]  K. Ebert,et al.  Electrochemical mediators for total oxidation of chlorinated hydrocarbons: formation kinetics of Ag(II), Co(III), and Ce(IV) , 1995 .

[26]  I. Nikolov,et al.  Influence of nitrogen oxides on the electrocatalytic oxidation of sulphur dioxide , 1992 .

[27]  D. Gabe The rotating cylinder electrode , 1974 .

[28]  G. Kreysa,et al.  Optimal design of packed bed cells for high conversion , 1982 .

[29]  G. Kreysa,et al.  An indirect electrochemical process for the removal of NOx from industrial waste gases , 1997 .

[30]  A. Wragg,et al.  Electrochemical engineering and energy , 1994 .

[31]  K. Simmrock,et al.  The behaviour of ion exchange membranes in electrolysis and electrodialysis of sodium sulphate , 1991 .

[32]  Louis Guiffrida Physical security: An introduction , 1987 .

[33]  Richard C. Alkire,et al.  Advances in electrochemical science and engineering , 1990 .

[34]  G. Kreysa Festbettelektrolyse — ein Verfahren zur Reinigung metallhaltiger Abwässer , 1978 .

[35]  T. Hibino Electrochemical removal of both NO and CH4 under lean-burn conditions , 1995 .

[36]  P. Costa,et al.  Interactions of variables in the fluidised-bed electrowinning of copper , 1975 .

[37]  H. V. Plessen,et al.  Verwertung von Natriumsulfat , 1989 .

[38]  M. Jakšić,et al.  The Electrochemical Activation of Catalytic Reactions , 1996 .

[39]  C. Pulgarin,et al.  Electrochemical oxidation of phenol for wastewater treatment using SnO2, anodes , 1993 .

[40]  P. Lu,et al.  An Investigation of Electrode Materials for the Anodic Oxidation of Sulfur Dioxide in Concentrated Sulfuric Acid , 1980 .

[41]  J. Yates,et al.  IChemE research event , 1997 .

[42]  F. Lapicque,et al.  Electrochemical investigations of the Ce(m)/Ce(iv) couple related to a Ce(iv)-assisted process for SO2/NOx abatement , 1995 .

[43]  G. Kreysa,et al.  Ein elektrochemisches Absorptionsverfahren zur Gasreinigung , 1983 .

[44]  Edwin D. Mares,et al.  On S , 1994, Stud Logica.

[45]  F. Lapicque,et al.  Scrubbing of sulfur dioxide using a cerium(IV)-containing acidic solution: A kinetic investigation , 1996 .

[46]  P. Lewis,et al.  Electrochemical Treatment of Mixed and Hazardous Wastes: Oxidation of Ethylene Glycol and Benzene by Silver (II) , 1992 .

[47]  G. Kreysa Elektrochemie mit dreidimensionalen Elektroden , 1983 .

[48]  G. Kreysa Performance criteria and nomenclature in electrochemical engineering , 1985 .

[49]  C. Pulgarin,et al.  Anodic oxidation of phenol for waste water treatment , 1991 .

[50]  K. Rajeshwar,et al.  Electrochemistry and the environment , 1994 .

[51]  J. Newman,et al.  Electrochemical removal of copper ions from very dilute solutions , 1972 .

[52]  R. S. Wenger,et al.  Electrochemical concentrating and purifying from dilute copper solutions , 1976 .

[53]  S. Stucki Process technologies for water treatment , 1988 .

[54]  J. Winnick,et al.  Electrochemical removal and concentration of hydrogen sulfide from coal gas , 1984 .

[55]  R. C. Weast CRC Handbook of Chemistry and Physics , 1973 .

[56]  C. Vayenas,et al.  Dependence of catalytic rates on catalyst work function , 1990, Nature.

[57]  Allen J. Bard,et al.  Encyclopedia of Electrochemistry of the Elements , 1978 .

[58]  K. Ebert,et al.  Oxidative separation of nitrogen oxides from off-gases by electrochemical mediators , 1997 .

[59]  J. Bisang,et al.  Fundamental studies on a new concept of flue gas desulphurization , 1985 .

[60]  G. Kreysa Normalized space velocity—a new figure of merit for waste water electrolysis cells , 1981 .