Molecular polarizability of Si/Ge/GaAs semiconductors clusters

The interacting induced dipole polarization model implemented in our program for the calculation of molecular polarizabilities (POLAR) is used for the calculation of the molecular dipole-dipole polarizability ${\overline{\overline{α}}}$. POLAR is tested with Si$_{n}$, Ge$_{n}$ and Ga$_{n}$As$_{m}$ small clusters. The polarizability is an important quantity for the identification of clusters with different numbers of atoms and even for the separation of isomers. The results for the polarizability are in agreement with reference calculations performed with our version of the program PAPID (polarisabilites atomiques par interactions dipolaires) and with reference computations from Dr. J.R. Chelikowsky. The bulk limit for the polarizability is estimated from the Clausius-Mossotti relationship. The polarizability trend for the clusters as a function of size is different from what one might have expected. The clusters are more polarizable than what one might have inferred from the bulk polarizability. Previous experimental work yielded the opposite trend for somewhat larger clusters. At present, the origin of this difference is problematic. One might argue that smaller clusters need not behave like those of intermediate size. The high polarizability of small clusters is attributed to dangling bonds at the surface of the cluster. Indeed, most of the atoms within small clusters reside on the surface. In this respect, semiconductor clusters resemble metallic clusters.

[1]  Francisco Torrens,et al.  Nature of FeIII-O2, FeII-CO and FeIII-CN complexes of hemoprotein models , 2003 .

[2]  Freeman,et al.  Photofragmentation of Mass-Resolved Si2-12+ clusters. , 1985, Physical review letters.

[3]  Martin F. Jarrold,et al.  Nanosurface Chemistry on Size-Selected Silicon Clusters , 1991, Science.

[4]  Francisco Torrens,et al.  Molecular polarizability of Sc n , C n and endohedral Sc n @C m clusters , 2000 .

[5]  B. Thole Molecular polarizabilities calculated with a modified dipole interaction , 1981 .

[6]  Francisco Torrens,et al.  Molecular polarizability of Scn, Cn and endohedral Scn@Cm clusters , 2002 .

[7]  James R. Chelikowsky The Electronic and Structural Properties of Semiconductor Clusters and Nanostructures , 1999 .

[8]  A. Ogura,et al.  Raman spectra of size-selected silicon clusters and comparison with calculated structures , 1993, Nature.

[9]  H. Scheraga,et al.  Intermolecular potentials from crystal data. 6. Determination of empirical potentials for O-H...O = C hydrogen bonds from packing configurations , 1984 .

[10]  Matthias Brack,et al.  The physics of simple metal clusters: self-consistent jellium model and semiclassical approaches , 1993 .

[11]  Koblar A. Jackson,et al.  CALCULATED POLARIZABILITIES OF INTERMEDIATE-SIZE SI CLUSTERS , 1999 .

[12]  Yousef Saad,et al.  Parallel methods and tools for predicting material properties , 2000, Comput. Sci. Eng..

[13]  Richard E. Smalley,et al.  Ultraviolet photoelectron spectroscopy of semiconductor clusters: Silicon and germanium , 1987 .

[14]  Becker,et al.  Polarizabilities of isolated semiconductor clusters. , 1996, Physical review letters.

[15]  Robert S. Mulliken,et al.  A New Electroaffinity Scale; Together with Data on Valence States and on Valence Ionization Potentials and Electron Affinities , 1934 .

[16]  L. Mitas,et al.  Quantum Monte Carlo determination of electronic and structural properties of Sin clusters (n <= 20). , 1995, Physical review letters.

[17]  Phillips,et al.  Interatomic force fields for silicon microclusters. , 1991, Physical review. B, Condensed matter.

[18]  Phillips,et al.  Electron-correlation energies and the structure of Si13. , 1993, Physical review. B, Condensed matter.

[19]  L. Silberstein,et al.  L. Molecular refractivity and atomic interaction. II , 1917 .

[20]  D. M. Bishop,et al.  Molecular vibrational and rotational motion in static and dynamic electric fields , 1990 .

[21]  Arthur I. Vogel,et al.  369. Physical properties and chemical constitution. Part XXIII. Miscellaneous compounds. Investigation of the so-called co-ordinate or dative link in esters of oxy-acids and in nitro-paraffins by molecular refractivity determinations. atomic, structural, and group parachors and refractivities , 1948 .

[22]  Walt A. de Heer,et al.  The physics of simple metal clusters: experimental aspects and simple models , 1993 .

[23]  Francisco Torrens,et al.  Nature of O2, CO, and CN binding to hemoprotein models , 2004 .

[24]  L. Silberstein XIX. Dispersion and the size of molecules of hydrogen, oxygen, and nitrogen , 1917 .

[25]  George Maroulis,et al.  Electric Dipole Polarizability of As4, a Challenging Problem for Both Experiment and Theory , 1998 .

[26]  Norman L. Allinger,et al.  Conformational analysis—CI , 1974 .

[27]  B. K. Rao,et al.  Physics and chemistry of small clusters , 1987 .

[28]  Robert S. Mulliken,et al.  Formulas and Numerical Tables for Overlap Integrals , 1949 .

[29]  L. Silberstein,et al.  VII. Molecular refractivity and atomic interaction , 1917 .

[30]  A. Aviram Molecular Electronics Science and Technology , 1989 .

[31]  Kenneth J. Miller,et al.  Calculation of the molecular polarizability tensor , 1990 .

[32]  J. R. Carl,et al.  Atom dipole interaction model for molecular polarizability. Application to polyatomic molecules and determination of atom polarizabilities , 1972 .

[33]  A. Alivisatos Semiconductor Clusters, Nanocrystals, and Quantum Dots , 1996, Science.

[34]  Francisco Torrens Zaragozá Interacting Induced dipoles polarization in a force field for dipeptide models (Glycine Derivative). , 1994 .

[35]  Che Ting Chan,et al.  Calculated polarizabilities of small Si clusters , 2000 .

[36]  Louis E. Brus,et al.  Electronic wave functions in semiconductor clusters: experiment and theory , 1986 .

[37]  James E. Huheey,et al.  The Electronegativity of Groups , 1965 .

[38]  Kurt V. Mikkelsen,et al.  Frequency-Dependent Molecular Polarizability Calculated within an Interaction Model , 2000 .

[39]  Kenneth J. Miller,et al.  Additivity methods in molecular polarizability , 1990 .

[40]  Francisco Torrens,et al.  Molecular polarizability of fullerenes and endohedral metallofullerenes , 2002 .

[41]  Francisco Torrens,et al.  Molecular Polarizability of Sc and C (Fullerene and Graphite) Clusters , 2001, Molecules : A Journal of Synthetic Chemistry and Natural Product Chemistry.

[42]  J. Applequist,et al.  An atom dipole interaction model for molecular optical properties , 1977 .

[43]  Francisco Torrens,et al.  Polarization Force Fields for Peptides Implemented in ECEPP2 and MM2 , 2000 .

[44]  Christophe Voisin,et al.  Computation of accurate electronic molecular polarizabilities , 1992 .

[45]  Y. Kayanuma,et al.  Quantum-size effects of interacting electrons and holes in semiconductor microcrystals with spherical shape. , 1988, Physical review. B, Condensed matter.

[46]  Steven G. Louie,et al.  Quantum theory of real materials , 1996 .

[47]  Francisco Torrens,et al.  Conformational aspects of some asymmetric Diels-Alder reactions. A molecular mechanics + polarization study , 1992 .

[48]  Robert R. Birge,et al.  Calculation of molecular polarizabilities using an anisotropic atom point dipole interaction model which includes the effect of electron repulsion , 1980 .

[49]  Richard E. Smalley,et al.  Ammonia chemisorption studies on silicon cluster ions , 1991 .

[50]  Norman L. Allinger,et al.  Conformational analysis. 130. MM2. A hydrocarbon force field utilizing V1 and V2 torsional terms , 1977 .

[51]  Richard W. Siegel,et al.  Synthesis, characterization, and properties of nanophase TiO_2 , 1988 .

[52]  Francisco Torrens,et al.  Interacting induced dipoles polarization model for molecular polarizabilities. Reference molecules, amino acids and model peptides , 1999 .

[53]  Christophe Voisin,et al.  Determination of distributed polarizabilities to be used for peptide modeling , 1993 .

[54]  H. Scheraga,et al.  Energy parameters in polypeptides. 9. Updating of geometrical parameters, nonbonded interactions, and hydrogen bond interactions for the naturally occurring amino acids , 1983 .

[55]  Richard W. Siegel,et al.  Research opportunities on clusters and cluster-assembled materials—A Department of Energy, Council on Materials Science Panel Report , 1989 .

[56]  J. Applequist,et al.  Atom charge transfer in molecular polarizabilities: application of the Olson-Sundberg model to aliphatic and aromatic hydrocarbons , 1993 .