Parallel Evolution of Cortical Areas Involved in Skilled Hand Use

Dexterous hands, used to manipulate food, tools, and other objects, are one of the hallmarks of primate evolution. However, the neural substrate of fine manual control necessary for these behaviors remains unclear. Here, we describe the functional organization of parietal cortical areas 2 and 5 in the cebus monkey. Whereas other New World monkeys can be quite dexterous, and possess a poorly developed area 5, cebus monkeys are the only New World primate known to use a precision grip, and thus have an extended repertoire of manual behaviors. Unlike other New World Monkeys, but much like the macaque monkey, cebus monkeys possess a proprioceptive cortical area 2 and a well developed area 5, which is associated with motor planning and the generation of internal body coordinates necessary for visually guided reaching, grasping, and manipulation. The similarity of these fields in cebus monkeys and distantly related macaque monkeys with similar manual abilities indicates that the range of cortical organizations that can emerge in primates is constrained, and those that emerge are the result of highly conserved developmental mechanisms that shape the boundaries and topographic organizations of cortical areas.

[1]  Takashi Toda,et al.  Representation of the midline trunk, bilateral arms, and shoulders in the monkey postcentral somatosensory cortex , 1998, Experimental Brain Research.

[2]  R Gattass,et al.  Cortical afferents of visual area MT in the Cebus monkey: Possible homologies between New and old World monkeys , 1993, Visual Neuroscience.

[3]  J. Maunsell,et al.  Two‐dimensional maps of the cerebral cortex , 1980, The Journal of comparative neurology.

[4]  E P Gardner,et al.  Somatosensory cortical mechanisms of feature detection in tactile and kinesthetic discrimination. , 1988, Canadian journal of physiology and pharmacology.

[5]  J. Kaas,et al.  Representations of the body surface in cortical areas 3b and 1 of squirrel monkeys: Comparisons with other primates , 1982, The Journal of comparative neurology.

[6]  Jon H Kaas,et al.  Anatomical and functional organization of somatosensory areas of the lateral fissure of the New World titi monkey (Callicebus moloch) , 2004, The Journal of comparative neurology.

[7]  P. Gilbert,et al.  Convergence of cerebral inputs onto dentate neurons in monkey , 1978, Experimental Brain Research.

[8]  J. Lynch,et al.  Functionally defined smooth and saccadic eye movement subregions in the frontal eye field of Cebus monkeys. , 1996, Journal of neurophysiology.

[9]  J. Kaas,et al.  The evolution of the neocortex in mammals: how is phenotypic diversity generated? , 2005, Current Opinion in Neurobiology.

[10]  S. Parker,et al.  The Mentalities of Gorillas and Orangutans: Comparative Perspectives , 2006 .

[11]  Iwona Stepniewska,et al.  Microstimulation reveals specialized subregions for different complex movements in posterior parietal cortex of prosimian galagos. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[12]  D. Fragaszy Preliminary quantitative studies of prehension in squirrel monkeys (Saimiri sciureus). , 1983, Brain, behavior and evolution.

[13]  M. Fernandes Tool use and predation of oysters (Crassostrea rhizophorae) by the tufted capuchin,Cebus apella appella, in brackish water mangrove swamp , 1991, Primates.

[14]  R. Andersen,et al.  Coding of intention in the posterior parietal cortex , 1997, Nature.

[15]  Paul B. Johnson,et al.  Premotor and parietal cortex: corticocortical connectivity and combinatorial computations. , 1997, Annual review of neuroscience.

[16]  A M Dale,et al.  Segregation of somatosensory activation in the human rolandic cortex using fMRI. , 2000, Journal of neurophysiology.

[17]  B. Hall Descent with modification: the unity underlying homology and homoplasy as seen through an analysis of development and evolution , 2003, Biological reviews of the Cambridge Philosophical Society.

[18]  Rolf Rutishauser,et al.  Evo-devo and the search for homology (“sameness”) in biological systems , 2005, Theory in biosciences.

[19]  C. Boesch,et al.  The Chimpanzees of the Tai Forest : Behavioural Ecology and Evolution , 2000 .

[20]  B Bioulac,et al.  A quantitative study of neuronal discharge in areas 5, 2, and 4 of the monkey during fast arm movements. , 1991, Journal of neurophysiology.

[21]  J. Kaas,et al.  Double representation of the body surface within cytoarchitectonic area 3b and 1 in “SI” in the owl monkey (aotus trivirgatus) , 1978, The Journal of comparative neurology.

[22]  L Krubitzer,et al.  A redefinition of somatosensory areas in the lateral sulcus of macaque monkeys , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[23]  R. Lemon,et al.  Direct and indirect corticospinal control of arm and hand motoneurons in the squirrel monkey (Saimiri sciureus). , 1997, Journal of neurophysiology.

[24]  R. E. Passingham,et al.  Parietal cortex and movement I. Movement selection and reaching , 1997, Experimental Brain Research.

[25]  L. Krubitzer 6.10 – The Evolution of Parietal Areas Involved in Hand Use in Primates , 2008 .

[26]  Valentina Truppa,et al.  Grasping behavior in tufted capuchin monkeys (Cebus apella): grip types and manual laterality for picking up a small food item. , 2004, American journal of physical anthropology.

[27]  C. Bernhard,et al.  New investigations on the pyramidal system inMacaca mulatta , 1953, Experientia.

[28]  Carel P. van Schaik,et al.  Intelligent tool use in wild Sumatran orangutans , 1999 .

[29]  P. Goldman-Rakic,et al.  Ipsilateral cortical connections of granular frontal cortex in the strepsirhine primate Galago, with comparative comments on anthropoid primates , 1991, The Journal of comparative neurology.

[30]  E. Simons,et al.  Limb skeleton and locomotor adaptations of Apidium phiomense, an Oligocene anthropoid from Egypt. , 1995, American journal of physical anthropology.

[31]  R B Masterton,et al.  The role of the corticospinal tract in the evolution of human digital dexterity. , 1983, Brain, behavior and evolution.

[32]  J. Kaas,et al.  Representations of the body surface in areas 3b and 1 of postcentral parietal cortex of cebus monkeys , 1983, Brain Research.

[33]  F. Gallyas Silver staining of myelin by means of physical development. , 1979, Neurological research.

[34]  U. Castiello The neuroscience of grasping , 2005, Nature Reviews Neuroscience.

[35]  J. Tigges,et al.  Efferents of area 4 in a South American monkey (Saimiri) I. Terminations in the spinal cord , 1979, Brain Research.

[36]  V. Mountcastle,et al.  Posterior parietal association cortex of the monkey: command functions for operations within extrapersonal space. , 1975, Journal of neurophysiology.

[37]  Marcello G P Rosa,et al.  Brain maps, great and small: lessons from comparative studies of primate visual cortical organization , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[38]  M. Hallett,et al.  Functional properties of brain areas associated with motor execution and imagery. , 2003, Journal of neurophysiology.

[39]  J. Lynch,et al.  Corticocortical input to the smooth and saccadic eye movement subregions of the frontal eye field in Cebus monkeys. , 1996, Journal of neurophysiology.

[40]  C. E. Chapman,et al.  Discharge properties of neurones in the hand area of primary somatosensory cortex in monkeys in relation to the performance of an active tactile discrimination task , 2004, Experimental Brain Research.

[41]  L. Krubitzer,et al.  Nature versus nurture revisited: an old idea with a new twist , 2003, Progress in Neurobiology.

[42]  PL Strick,et al.  Corticospinal terminations in two new-world primates: further evidence that corticomotoneuronal connections provide part of the neural substrate for manual dexterity , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[43]  T. Insel,et al.  The primate neocortex in comparative perspective using magnetic resonance imaging. , 1999, Journal of human evolution.

[44]  T. Aflalo,et al.  Possible Origins of the Complex Topographic Organization of Motor Cortex: Reduction of a Multidimensional Space onto a Two-Dimensional Array , 2006, The Journal of Neuroscience.

[45]  Heffner Rs,et al.  The Role of the Corticospinal Tract in the Evolution of Human Digital Dexterity , 1983 .

[46]  M. Tavares,et al.  Spontaneous Tool Use by Wild Capuchin Monkeys (Cebus libidinosus) in the Cerrado , 2006, Folia Primatologica.

[47]  R. E. Passingham,et al.  Parietal cortex and movement II. Spatial representation , 1997, Experimental Brain Research.

[48]  Leah Krubitzer,et al.  The organization and connections of anterior and posterior parietal cortex in titi monkeys: do New World monkeys have an area 2? , 2005, Cerebral cortex.

[49]  M. Tanaka,et al.  Processing of tactile and kinesthetic signals from bilateral sides of the body in the postcentral gyrus of awake monkeys , 2002, Behavioural Brain Research.

[50]  Ageranioti-Bélanger Sa,et al.  Discharge properties of neurones in the hand area of primary somatosensory cortex in monkeys in relation to the performance of an active tactile discrimination task. II. Area 2 as compared to areas 3b and 1. , 1992 .

[51]  Jon H. Kaas,et al.  Evolution of nervous systems : a comprehensive reference , 2007 .

[52]  A. Sitompul,et al.  Manufacture and use of tools in wild Sumatran orangutans , 1996, Naturwissenschaften.

[53]  M S Graziano,et al.  Coding the location of the arm by sight. , 2000, Science.

[54]  M. Corbetta,et al.  Functional Organization of Human Intraparietal and Frontal Cortex for Attending, Looking, and Pointing , 2003, The Journal of Neuroscience.

[55]  R. Ivry,et al.  Independent on‐line control of the two hands during bimanual reaching , 2004, The European journal of neuroscience.

[56]  E. Robertis,et al.  The ancestry of segmentation , 1997, nature.

[57]  J. Kaas,et al.  The somatotopic organization of area 2 in macaque monkeys , 1985, The Journal of comparative neurology.

[58]  J. Kalaska Parietal cortex area 5 and visuomotor behavior. , 1996, Canadian journal of physiology and pharmacology.

[59]  J Hyvärinen,et al.  Receptive field integration and submodality convergence in the hand area of the post‐central gyrus of the alert monkey. , 1978, The Journal of physiology.

[60]  E. Jones,et al.  The sensory hand , 2006 .

[61]  Dorothy Fragaszy,et al.  Manual Function in Cebus apella. Digital Mobility, Preshaping, and Endurance in Repetitive Grasping , 2000, International Journal of Primatology.

[62]  L. Marino Cetacean Brain Evolution , 2007 .

[63]  Dorothy Fragaszy,et al.  Wild capuchin monkeys (Cebus libidinosus) use anvils and stone pounding tools , 2004, American journal of primatology.

[64]  F. Lacquaniti,et al.  Representing spatial information for limb movement: role of area 5 in the monkey. , 1995, Cerebral cortex.

[65]  P. Strick,et al.  Frontal Lobe Inputs to the Digit Representations of the Motor Areas on the Lateral Surface of the Hemisphere , 2005, The Journal of Neuroscience.

[66]  R J Wise,et al.  Cerebral areas associated with motor control of speech in humans. , 1997, Journal of applied physiology.

[67]  L. Bianchi,et al.  Posterior parietal cortex: functional properties of neurons in area 5 during an instructed-delay reaching task within different parts of space , 2004, Experimental Brain Research.

[68]  Y. Iwamura,et al.  Bilateral receptive field neurons and callosal connections in the somatosensory cortex. , 2000, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[69]  Jon H Kaas,et al.  Topographic Maps are Fundamental to Sensory Processing , 1997, Brain Research Bulletin.

[70]  J. Napier,et al.  The Spread of Cancer , 1968, The Yale Journal of Biology and Medicine.

[71]  R. Lemon,et al.  Striking differences in transmission of corticospinal excitation to upper limb motoneurons in two primate species. , 2000, Journal of neurophysiology.

[72]  J. F. Kalaska,et al.  Parietal corte× area 5 and visuomotor behavior , 1996 .

[73]  R. Andersen,et al.  Multimodal representation of space in the posterior parietal cortex and its use in planning movements. , 1997, Annual review of neuroscience.

[74]  J. Semmes,et al.  Behavioral consequences of selective subtotal ablations in the postcentral gyrus of Macaca mulatta. , 1974, Brain research.

[75]  R. Cruz-Rizzolo,et al.  Distribution of NADPH-diaphorase-positive neurons in the prefrontal cortex of the Cebus monkey , 2006, Brain Research.

[76]  Michelle Y. Merrill,et al.  The conditions for tool use in primates: implications for the evolution of material culture. , 1999, Journal of human evolution.

[77]  R. Lemon,et al.  Comparing the function of the corticospinal system in different species: Organizational differences for motor specialization? , 2005, Muscle & nerve.

[78]  Esther P. Gardner,et al.  Comparison of neuronal firing rates in somatosensory and posterior parietal cortex during prehension , 2001, Experimental Brain Research.

[79]  Atsushi Iriki,et al.  Bilateral receptive field neurons in the hindlimb region of the postcentral somatosensory cortex in awake macaque monkeys , 2000, Experimental Brain Research.

[80]  Elisabeth A. Murray,et al.  Relative contributions of SII and area 5 to tactile discrimination in monkeys , 1984, Behavioural Brain Research.

[81]  C. E. Chapman,et al.  Discharge properties of neurones in the hand area of primary somatosensory cortex in monkeys in relation to the performance of an active tactile discrimination task , 2004, Experimental Brain Research.

[82]  J. Goodall,et al.  Tool-Using and Aimed Throwing in a Community of Free-Living Chimpanzees , 1964, Nature.

[83]  J. Napier,et al.  A Handbook of Living Primates , 1969 .

[84]  M. Rose Functional morphological similarities in the locomotor skeleton of miocene catarrhines and platyrrhine monkeys. , 1996, Folia primatologica; international journal of primatology.

[85]  L. Lefebvre,et al.  Cetaceans Have Complex Brains for Complex Cognition , 2007, PLoS biology.

[86]  M. Carlson,et al.  Characteristics of sensory deficits following lesions of brodmann's areas 1 and 2 in the postcentral gyrus ofMacaca mulatta , 1981, Brain Research.

[87]  M. Tanaka,et al.  Coding of modified body schema during tool use by macaque postcentral neurones. , 1996, Neuroreport.

[88]  J. Wolpaw Correlations between task-related activity and responses to perturbation in primate sensorimotor cortex. , 1980, Journal of neurophysiology.

[89]  F. Conlon,et al.  T‐box genes in early embryogenesis , 2004, Developmental dynamics : an official publication of the American Association of Anatomists.