Statistical Modeling of Soil Moisture, Integrating Satellite Remote-Sensing (SAR) and Ground-Based Data

We present a flexible, integrated statistical-based modeling approach to improve the robustness of soil moisture data predictions. We apply this approach in exploring the consequence of different choices of leading predictors and covariates. Competing models, predictors, covariates and changing spatial correlation are often ignored in empirical analyses and validation studies. An optimal choice of model and predictors may, however, provide a more consistent and reliable explanation of the high environmental variability and stochasticity of soil moisture observational data. We integrate active polarimetric satellite remote-sensing data (RADARSAT-2, C-band) with ground-based in-situ data across an agricultural monitoring site in Canada. We apply a grouped step-wise algorithm to iteratively select best-performing predictors of soil moisture. Integrated modeling approaches may better account for observed uncertainty and be tuned to different applications that vary in scale and scope, while also providing greater insights into spatial scaling (upscaling and downscaling) of soil moisture variability from the field- to regional scale. We discuss several methodological extensions and data requirements to enable further statistical modeling and validation for improved agricultural decision-support.

[1]  Wolfgang Wagner,et al.  On the Soil Roughness Parameterization Problem in Soil Moisture Retrieval of Bare Surfaces from Synthetic Aperture Radar , 2008, Sensors.

[2]  Hari Shanker Srivastava,et al.  Use of multiincidence angle RADARSAT-1 SAR data to incorporate the effect of surface roughness in soil moisture estimation , 2003, IEEE Trans. Geosci. Remote. Sens..

[3]  Emanuele Santi,et al.  A Comparison of Algorithms for Retrieving Soil Moisture from ENVISAT/ASAR Images , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[4]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[5]  A. G. T. Schut,et al.  Combining close‐range and remote sensing for local assessment of biophysical characteristics of arable land , 2007 .

[6]  Ross Bryant,et al.  Measuring Surface Roughness Height to Parameterize Radar Backscatter Models for Retrieval of Surface Soil Moisture , 2007, IEEE Geoscience and Remote Sensing Letters.

[7]  A. Chehbouni,et al.  Soil surface moisture estimation over a semi-arid region using ENVISAT ASAR radar data for soil evaporation evaluation , 2011 .

[8]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[9]  A. Tropsha,et al.  Beware of q 2 , 2002 .

[10]  J. Zidek,et al.  Selecting a binary Markov model for a precipitation process , 2011, Environmental and Ecological Statistics.

[11]  Sw. Banerjee,et al.  Hierarchical Modeling and Analysis for Spatial Data , 2003 .

[12]  Marouane Temimi,et al.  Non-parametric Methods for Soil Moisture Retrieval from Satellite Remote Sensing Data , 2009, Remote. Sens..

[13]  R. J. Brown,et al.  Mapping of soil moisture from C-band radar images , 1996 .

[14]  Thomas J. Jackson,et al.  Mapping surface roughness and soil moisture using multi-angle radar imagery without ancillary data , 2008 .

[15]  M. S. Moran,et al.  C- and multiangle Ku-band synthetic aperture radar data for bare soil moisture estimation in agricultural areas , 1998 .

[16]  Nunzio Romano,et al.  Soil moisture at local scale: Measurements and simulations , 2014 .

[17]  Ralph Kühne,et al.  External Validation and Prediction Employing the Predictive Squared Correlation Coefficient Test Set Activity Mean vs Training Set Activity Mean , 2008, J. Chem. Inf. Model..

[18]  Bailing Li,et al.  Spatial variability and its scale dependency of observed and modeled soil moisture over different climate regions , 2012 .

[19]  H. Akaike A new look at the statistical model identification , 1974 .

[20]  D. Madigan,et al.  Bayesian Model Averaging for Linear Regression Models , 1997 .

[21]  Jean-Pierre Wigneron,et al.  Estimation of Watershed Soil Moisture Index from ERS/SAR Data , 2000 .

[22]  Keming Yu,et al.  Bayesian Mode Regression , 2012, 1208.0579.

[23]  Gui Gao,et al.  Statistical Modeling of SAR Images: A Survey , 2010, Sensors.

[24]  R. J. Brown,et al.  Quantitative soil moisture extraction from airborne SAR data. , 1990 .

[25]  Bradley P. Carlin,et al.  Bayesian measures of model complexity and fit , 2002 .

[26]  Kazuo Ouchi,et al.  Recent Trend and Advance of Synthetic Aperture Radar with Selected Topics , 2013, Remote. Sens..

[27]  Roger Woodard,et al.  Interpolation of Spatial Data: Some Theory for Kriging , 1999, Technometrics.

[28]  P. Diggle,et al.  Model‐based geostatistics , 2007 .

[29]  Steve H. L. Liang,et al.  Integrated sensing of soil moisture at the field-scale: Measuring, modeling and sharing for improved agricultural decision support , 2014 .

[30]  S. de Bruin,et al.  Integrating spatial statistics and remote sensing , 1998 .

[31]  N. Glenn,et al.  The use of geostatistics in relating soil moisture to RADARSAT-1 SAR data obtained over the Great Basin, Nevada, USA , 2003 .

[32]  Mehrez Zribi,et al.  Semiempirical Calibration of the Integral Equation Model for SAR Data in C-Band and Cross Polarization Using Radar Images and Field Measurements , 2011, IEEE Geoscience and Remote Sensing Letters.

[33]  Amine Merzouki,et al.  Sensitivity of C-band SAR polarimetric variables to unvegetated agricultural fields , 2013 .

[34]  Xiaojing Bai,et al.  A Synergistic Methodology for Soil Moisture Estimation in an Alpine Prairie Using Radar and Optical Satellite Data , 2014, Remote. Sens..

[35]  J. Wigneron,et al.  An empirical calibration of the integral equation model based on SAR data, soil moisture and surface roughness measurement over bare soils , 2002 .

[36]  Roberto Todeschini,et al.  Comments on the Definition of the Q2 Parameter for QSAR Validation , 2009, J. Chem. Inf. Model..

[37]  Kamal Sarabandi,et al.  Semi-empirical model of the ensemble-averaged differential Mueller matrix for microwave backscattering from bare soil surfaces , 2002, IEEE Trans. Geosci. Remote. Sens..

[38]  Jan Vanderborght,et al.  On the spatio-temporal dynamics of soil moisture at the field scale , 2014 .

[39]  Brian W. Barrett,et al.  Evaluation of a Global Soil Moisture Product from Finer Spatial Resolution SAR Data and Ground Measurements at Irish Sites , 2014, Remote. Sens..

[40]  Douglas L. Kane,et al.  Spatial estimation of soil moisture using synthetic aperture radar in Alaska , 1999 .

[41]  Pascale C. Dubois,et al.  Measuring soil moisture with imaging radars , 1995, IEEE Trans. Geosci. Remote. Sens..

[42]  Amine Merzouki,et al.  Mapping Soil Moisture Using RADARSAT-2 Data and Local Autocorrelation Statistics , 2011, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[43]  Seasonal Autoregressive Models for Estimating the Probability of Frost in Rafsanjan , 2012 .

[44]  Jiancheng Shi,et al.  Estimation of bare surface soil moisture and surface roughness parameter using L-band SAR image data , 1997, IEEE Trans. Geosci. Remote. Sens..

[45]  A. Tropsha,et al.  Beware of q2! , 2002, Journal of molecular graphics & modelling.

[46]  Alan R. Ek,et al.  Bayesian multivariate process modeling for prediction of forest attributes , 2008 .

[47]  James V. Zidek,et al.  Time-Varying Markov Models for Binary Temperature Series in Agrorisk Management , 2012 .