Simulation of a single polymer chain in solution by combining lattice Boltzmann and molecular dynamics

In this paper we establish a new efficient method for simulating polymer–solvent systems which combines a lattice Boltzmann approach for the fluid with a continuum molecular-dynamics (MD) model for the polymer chain. The two parts are coupled by a simple dissipative force while the system is driven by stochastic forces added to both the fluid and the polymer. Extensive tests of the new method for the case of a single polymer chain in a solvent are performed. The dynamic and static scaling properties predicted by analytical theory are validated. In this context, the influence of the finite size of the simulation box is discussed. While usually the finite size corrections scale as L−1 (L denoting the linear dimension of the box), the decay rate of the Rouse modes is only subject to an L−3 finite size effect. Furthermore, the mapping to an existing MD simulation of the same system is done so that all physical input values for the new method can be derived from pure MD simulation. Both methods can thus be com...

[1]  P. Bhatnagar,et al.  A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems , 1954 .

[2]  C. F. Curtiss,et al.  Molecular Theory Of Gases And Liquids , 1954 .

[3]  B. Zimm Dynamics of Polymer Molecules in Dilute Solution: Viscoelasticity, Flow Birefringence and Dielectric Loss , 1956 .

[4]  J. Erpenbeck,et al.  Statistical Mechanics of Irreversible Processes in Polymer Solutions , 1958 .

[5]  P. de Gennes,et al.  QUASI-ELASTIC SCATTERING OF NEUTRONS BY DILUTE POLYMER SOLUTIONS. I. FREE-DRAINING LIMIT. , 1967 .

[6]  D. Ermak,et al.  Brownian dynamics with hydrodynamic interactions , 1978 .

[7]  P. Gennes Scaling Concepts in Polymer Physics , 1979 .

[8]  A. Akcasu,et al.  The Effect of Preaveraging the Oseen Tensor on the Characteristic Frequency in Good Solvents , 1980 .

[9]  A. Akcasu,et al.  Interpretation of dynamic scattering from polymer solutions , 1980 .

[10]  K. Freed,et al.  Conformation space renormalization of polymers. II. Single chain dynamics based on chain diffusion equation model , 1981 .

[11]  M. Fixman Inclusion of hydrodynamic interaction in polymer dynamical simulations , 1981 .

[12]  M. Fixman Effects of fluctuating hydrodynamic interaction , 1983 .

[13]  S. Edwards,et al.  The Theory of Polymer Dynamics , 1986 .

[14]  C. Beenakker Ewald sum of the Rotne-Prager tensor , 1986 .

[15]  H. C. Öttinger,et al.  A comparison between simulations and various approximations for Hookean dumbbells with hydrodynamic interaction , 1989 .

[16]  K. Kremer,et al.  Thermodynamic properties of star polymers: good solvents , 1989 .

[17]  G. Grest,et al.  Dynamics of entangled linear polymer melts: A molecular‐dynamics simulation , 1990 .

[18]  J. J. Freire,et al.  Translational diffusion, relaxation times, and quasi-elastic scattering of flexible chains with excluded volume and fluctuating hydrodynamic interactions: a Brownian dynamics study , 1991 .

[19]  Carlo Pierleoni,et al.  Molecular dynamics investigation of dynamic scaling for dilute polymer solutions in good solvent conditions , 1992 .

[20]  J. Koelman,et al.  Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics , 1992 .

[21]  R. Benzi,et al.  The lattice Boltzmann equation: theory and applications , 1992 .

[22]  Y. Qian,et al.  Lattice BGK Models for Navier-Stokes Equation , 1992 .

[23]  D. Rapaport,et al.  Molecular Dynamics Simulation of Linear Polymers in a Solvent , 1992 .

[24]  A. Ladd Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation , 1993, Journal of Fluid Mechanics.

[25]  Kurt Kremer,et al.  Molecular dynamics simulation of a polymer chain in solution , 1993 .

[26]  Burkhard Dünweg,et al.  Molecular dynamics algorithms and hydrodynamic screening , 1993 .

[27]  A. Ladd Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 2. Numerical results , 1993, Journal of Fluid Mechanics.

[28]  S. Chen,et al.  Comparison of spectral method and lattice Boltzmann simulations of two‐dimensional hydrodynamics , 1993, comp-gas/9303003.

[29]  P. Español,et al.  Statistical Mechanics of Dissipative Particle Dynamics. , 1995 .

[30]  A. G. Schlijper,et al.  Computer simulation of dilute polymer solutions with the dissipative particle dynamics method , 1995 .

[31]  Gerald H. Ristow,et al.  ON THE APPLICATION OF A NOVEL ALGORITHM TO HYDRODYNAMIC DIFFUSION AND VELOCITY FLUCTUATIONS IN SEDIMENTING SYSTEMS , 1996 .

[32]  P. B. Warren,et al.  DISSIPATIVE PARTICLE DYNAMICS : BRIDGING THE GAP BETWEEN ATOMISTIC AND MESOSCOPIC SIMULATION , 1997 .

[33]  C. A. Marsh,et al.  Fokker-Planck-Boltzmann equation for dissipative particle dynamics , 1997 .

[34]  B. Dünweg,et al.  Dynamics of polymer ''isotope'' mixtures: Molecular dynamics simulation and Rouse model analysis , 1997 .

[35]  Nicos Martys,et al.  Evaluation of the external force term in the discrete Boltzmann equation , 1998 .

[36]  Ignacio Pagonabarraga,et al.  Self-consistent dissipative particle dynamics algorithm , 1998 .

[37]  Alexander J. Wagner An H-theorem for the lattice Boltzmann approach to hydrodynamics , 1998 .

[38]  M. Pütz,et al.  Optimization techniques for parallel molecular dynamics using domain decomposition , 1998 .

[39]  Shiyi Chen,et al.  LATTICE BOLTZMANN METHOD FOR FLUID FLOWS , 2001 .

[40]  Burkhard Dünweg,et al.  Lattice Boltzmann Simulation of Polymer-Solvent Systems , 1998 .

[41]  S. Whittington Numerical methods for polymeric systems , 1998 .

[42]  P. Español,et al.  FLUID PARTICLE MODEL , 1998 .

[43]  Berend Smit,et al.  Understanding Molecular Simulation , 2001 .