Creating flat-top X-ray beams by applying surface profiles of alternating curvature to deformable piezo bimorph mirrors

A piezo bimorph mirror is deformed into three distinct re-entrant surface modifications as well as being simply defocused. A re-entrant modification with seven segments (the maximum possible for this mirror) produces an expanded beam with less striation than a simply defocused beam.

[1]  D. Malacara-Hernández,et al.  PRINCIPLES OF OPTICS , 2011 .

[2]  Y. Mori,et al.  Figuring with subnanometer-level accuracy by numerically controlled elastic emission machining , 2002 .

[3]  Simon G. Alcock,et al.  Bimorph mirrors: The Good, the Bad, and the Ugly , 2013 .

[4]  Daniele Spiga,et al.  Mirrors for X-ray telescopes: Fresnel diffraction-based computation of point spread functions from metrology , 2014, 1409.1750.

[5]  O. Hignette,et al.  Multi-segmented piezoelectric mirrors as active/adaptive optics components. , 1998, Journal of synchrotron radiation.

[6]  John P. Sutter,et al.  Geometrical and wave-optical effects on the performance of a bent-crystal dispersive X-ray spectrometer , 2010 .

[7]  T. Ishikawa,et al.  R&D on third generation multi-segmented piezoelectric bimorph mirror substrates at Spring-8 , 2001 .

[8]  Kawal Sawhney,et al.  A Test Beamline on Diamond Light Source , 2010 .

[9]  Manuel Sanchez del Rio,et al.  SHADOW3: a new version of the synchrotron X-ray optics modelling package , 2011, Journal of synchrotron radiation.

[10]  Andrew G. Glen,et al.  APPL , 2001 .

[11]  Frank Siewert,et al.  The Diamond-NOM: A non-contact profiler capable of characterizing optical figure error with sub-nanometre repeatability , 2010 .

[12]  Kawal Sawhney,et al.  Two-dimensional in situ metrology of X-ray mirrors using the speckle scanning technique , 2015, Journal of synchrotron radiation.

[13]  Hongchang Wang,et al.  Structure in defocused beams of x-ray mirrors: causes and possible solutions , 2014, Optics & Photonics - Optical Engineering + Applications.

[14]  Andreas K. Freund,et al.  Incoherent x-ray mirror surface metrology , 1997, Optics & Photonics.

[15]  D. Spiga,et al.  X-ray beam-shaping via deformable mirrors: Analytical computation of the required mirror profile , 2013, 1301.2121.

[16]  Riccardo Signorato,et al.  Characterisation of a novel super-polished bimorph mirror , 2013 .

[17]  John A. Hoffnagle,et al.  Beam shaping profiles and propagation , 2005, SPIE Optics + Photonics.

[18]  Josep Nicolas,et al.  Modulation of intensity in defocused beams , 2013, Optics & Photonics - Optical Engineering + Applications.

[19]  Simon G. Alcock,et al.  Automated in-situ optimization of bimorph mirrors at Diamond Light Source , 2011, Optical Engineering + Applications.

[20]  Sebastien Berujon,et al.  At-wavelength metrology of hard X-ray mirror using near field speckle. , 2014, Optics express.

[21]  Kawal Sawhney,et al.  Surface profiling of X-ray mirrors for shaping focused beams. , 2015, Optics express.

[22]  D. Spiga,et al.  X-ray optical systems: from metrology to Point Spread Function , 2014 .

[23]  Kawal Sawhney,et al.  Advanced in situ metrology for x-ray beam shaping with super precision. , 2015, Optics express.

[24]  J. Bahrdt,et al.  Wave-front propagation: design code for synchrotron radiation beam lines. , 1997, Applied optics.

[25]  Christoph Rau,et al.  Fast optimization of a bimorph mirror using x-ray grating interferometry. , 2014, Optics letters.

[26]  B. Krauskopf,et al.  Proc of SPIE , 2003 .

[27]  J. Susini,et al.  Compact active/adaptive x‐ray mirror: Bimorph piezoelectric flexible mirror , 1995 .

[28]  E. Wolf,et al.  Principles of Optics (7th Ed) , 1999 .

[29]  Giovanni Sostero,et al.  A beam-shaping system for TIMEX beamline , 2011 .

[30]  I Nistea,et al.  Development of a multi-lane X-ray mirror providing variable beam sizes. , 2016, The Review of scientific instruments.