Evolution from sinusoidal to collinear A-type antiferromagnetic spin-ordered magnetic phase transition in Tb1−x Pr x MnO3 solid solution

The present study reports on the structural and magnetic phase transitions in Pr-doped polycrystalline Tb0.6Pr0.4MnO3, using high-resolution neutron powder diffraction (NPD) collected at SINQ spallation source, to emphasize the suppression of the sinusoidal magnetic structure of pure TbMnO3 and the evolution to a collinear A-type antiferromagnetic ordering. The phase purity, Jahn–Teller distortion, and one-electron bandwidth for eg orbital of Mn3+ cation have been calculated for polycrystalline Tb0.6Pr0.4MnO3, in comparison to the parent materials TbMnO3 and PrMnO3, through the Rietveld refinement study from x-ray diffraction data at room temperature, which reveals the GdFeO3 type orthorhombic structure of Tb0.6Pr0.4MnO3 having Pnma space group symmetry. The temperature-dependent zero field-cooled and field-cooled dc magnetization study at low temperature down to 5 K reveals a variation in the magnetic phase transition due to the effect of Pr3+ substitution at the Tb3+ site, which gives the signature of the antiferromagnetic nature of the sample, with a weak ferromagnetic component at low temperature-induced by an external magnetic field. The field-dependent magnetization study at low temperatures gives the weak coercivity having the order of 2 kOe, which is expected due to the canted-spin arrangement or ferromagnetic nature of Terbium ordering. The NPD data for Tb0.6Pr0.4MnO3 confirms that the nuclear structure of the synthesized sample maintains its orthorhombic symmetry down to 1.5 K. Also, the magnetic structures have been solved at 50 K, 25 K, and 1.5 K through the NPD study, which shows an A-type antiferromagnetic spin arrangement having the magnetic space group Pn′ma′.

[1]  A. Muñoz,et al.  Magnetization spin reversal and neutron diffraction study of polycrystalline Tb0.55Sr0.45MnO3 , 2020 .

[2]  M. Burkhard,et al.  Preface , 2010, IOP Conference Series: Materials Science and Engineering.

[3]  J. Alonso,et al.  Structural correlation of magneto-electric coupling in polycrystalline TbMnO3 at low temperature , 2019, Journal of Alloys and Compounds.

[4]  R. Ramesh,et al.  Advances in magnetoelectric multiferroics , 2019, Nature Materials.

[5]  Zhenxiang Cheng,et al.  Domain switching in single-phase multiferroics , 2018, Applied Physics Reviews.

[6]  P. Yu,et al.  Engineering magnetism at functional oxides interfaces: manganites and beyond , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[7]  P. Jain,et al.  Magnetic structures and dynamics of multiferroic systems obtained with neutron scattering , 2016, npj Quantum Materials.

[8]  M. Fiebig,et al.  The evolution of multiferroics , 2016 .

[9]  P. V. Reddy,et al.  Thermal, magnetic and electrical properties of Tb1−xDyxMnO3 multiferroics , 2016 .

[10]  A. Cano,et al.  Non-collinear magnetism in multiferroic perovskites , 2016, Journal of physics. Condensed matter : an Institute of Physics journal.

[11]  C. Franchini,et al.  Combined first-principles and model Hamiltonian study of the perovskite series RMnO3 (R=La,Pr,Nd,Sm,Eu, and Gd) , 2015, 1511.03545.

[12]  Weihua Tang,et al.  Study of structure and magnetic ordering in multiferroics Tb1−xNdxMnO3 by neutron powder diffraction , 2015 .

[13]  R. Ramprasad,et al.  Dopant-mediated structural and magnetic properties of TbMnO3 , 2015, 1505.07182.

[14]  Vincent Garcia,et al.  Magnetoelectric Devices for Spintronics , 2014 .

[15]  V. Markovich,et al.  Magnetic Properties of Perovskite Manganites and Their Modifications , 2014 .

[16]  X. Zhang,et al.  Atomic distribution, local structure and cation size effect in o-R1−xCaxMnO3 (R = Dy, Y, and Ho) , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[17]  M. H. Xu,et al.  Exchange bias effect in Tb0.4Dy0.6MnO3 , 2013 .

[18]  J. L. Ribeiro,et al.  Landau model for the phase diagrams of the orthorhombic rare-earth manganites RMnO3 (R=Eu, Gd, Tb, Dy, Ho) , 2010, 1004.1057.

[19]  M. Mostovoy,et al.  Magnetic order and ferroelectricity in RMnO3 multiferroic manganites: coupling between R- and Mn-spins , 2008 .

[20]  A. S. Logginov,et al.  Multiferroics: Promising materials for microelectronics, spintronics, and sensor technique , 2007 .

[21]  A. Wisniewski,et al.  Structural and magnetic properties of La{sub 1-x}Pr{sub x}MnO{sub 3+{delta}} (0{<=}x{<=}1.0) , 2006 .

[22]  T. Noh,et al.  Effect of orbital rotation and mixing on the optical properties of orthorhombic RMnO3 (R=La, Pr, Nd, Gd, and Tb). , 2006, Physical review letters.

[23]  Y. Tokura,et al.  Collinear to spiral spin transformation without changing the modulation wavelength upon ferroelectric transition in Tb1-xDyxMnO3. , 2006, Physical review letters.

[24]  A. Wisniewski,et al.  Structural and magnetic properties of La 1 − x Pr x MnO 3 + „ 0 Ï x Ï 1 . 0 ... , 2006 .

[25]  A. P. Ramirez,et al.  Magnetoelectric phase diagrams of orthorhombic R MnO 3 ( R = Gd , Tb, and Dy) , 2005 .

[26]  C. L. Zhang,et al.  Magnetic inversion symmetry breaking and ferroelectricity in TbMnO3. , 2005, Physical review letters.

[27]  J. Rodríguez-Carvajal Introduction to the Program FULLPROF: Refinement of Crystal and Magnetic Structures from Powder and Single Crystal Data , 2004 .

[28]  Y. Tokura,et al.  Magnetic control of ferroelectric polarization , 2003, Nature.

[29]  Y. Tokura,et al.  Distorted perovskite witheg1configuration as a frustrated spin system , 2002, cond-mat/0211568.

[30]  M. Iliev,et al.  Role of Jahn-Teller disorder in Raman scattering of mixed-valence manganites , 2002, cond-mat/0207298.

[31]  A. Muñoz,et al.  Magnetic structure evolution of NdMnO3 derived from neutron diffraction data , 2000 .

[32]  M. T. Casais,et al.  Evolution of the Jahn-Teller distortion of MnO6 octahedra in RMnO3 perovskites (R = Pr, Nd, Dy, Tb, Ho, Er, Y): a neutron diffraction study. , 2000, Inorganic chemistry.

[33]  Narendra Kumar,et al.  Charge ordering in the rare-earth manganates: the origin of the extraordinary sensitivity to the average radius of the A-site cations, , 1998 .

[34]  J. Hejtmánek,et al.  Canted structures in the Mn3+/Mn4+ perovskites , 1997 .

[35]  Juan Rodríguez-Carvajal,et al.  Recent advances in magnetic structure determination by neutron powder diffraction , 1993 .

[36]  A. M. Glazer,et al.  The classification of tilted octahedra in perovskites , 1972 .

[37]  M. T. Casais,et al.  Evolution of the Jahn-Teller Distortion of MnO 6 Octahedra in RMnO 3 Perovskites ( R ) , 2022 .