Morpheus: A Deep Learning Framework for the Pixel-level Analysis of Astronomical Image Data

We present Morpheus, a new model for generating pixel-level morphological classifications of astronomical sources. Morpheus leverages advances in deep learning to perform source detection, source segmentation, and morphological classification pixel-by-pixel via a semantic segmentation algorithm adopted from the field of computer vision. By utilizing morphological information about the flux of real astronomical sources during object detection, Morpheus shows resiliency to false-positive identifications of sources. We evaluate Morpheus by performing source detection, source segmentation, morphological classification on the Hubble Space Telescope data in the five CANDELS fields with a focus on the GOODS South field, and demonstrate a high completeness in recovering known GOODS South 3D-HST sources with H < 26 AB. We release the code publicly, provide online demonstrations, and present an interactive visualization of the Morpheus results in GOODS South.

[1]  B. J. Weiner,et al.  accepted to the Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE EVOLUTION OF GALAXY MERGERS AND MORPHOLOGY AT Z < 1.2 IN THE EXTENDED GROTH STRIP , 2007 .

[2]  Matthew A. Bershady,et al.  The asymmetry of galaxies: physical morphology for nearby and high redshift galaxies , 1999 .

[3]  S. P. Littlefair,et al.  THE ASTROPY PROJECT: BUILDING AN INCLUSIVE, OPEN-SCIENCE PROJECT AND STATUS OF THE V2.0 CORE PACKAGE , 2018 .

[4]  Andrew A. West,et al.  Evolution of the Bar Fraction in COSMOS: Quantifying the Assembly of the Hubble Sequence , 2007, 0710.4552.

[5]  Mattia Fumagalli,et al.  THE 3D-HST SURVEY: HUBBLE SPACE TELESCOPE WFC3/G141 GRISM SPECTRA, REDSHIFTS, AND EMISSION LINE MEASUREMENTS FOR ∼100,000 GALAXIES , 2015, 1510.02106.

[6]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[7]  Teng Liu,et al.  Morphology Dependence of Stellar Age in Quenched Galaxies at Redshift ∼1.2:Massive Compact Galaxies Are Older than More Extended Ones , 2016, 1607.06089.

[8]  Eduardo Serrano,et al.  LSST: From Science Drivers to Reference Design and Anticipated Data Products , 2008, The Astrophysical Journal.

[9]  Sander Dieleman,et al.  Rotation-invariant convolutional neural networks for galaxy morphology prediction , 2015, ArXiv.

[10]  Mattia Fumagalli,et al.  THE STRUCTURAL EVOLUTION OF MILKY-WAY-LIKE STAR-FORMING GALAXIES SINCE z ∼ 1.3 , 2013, 1304.2395.

[11]  Stefano Casertano,et al.  CANDELS: THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY—THE HUBBLE SPACE TELESCOPE OBSERVATIONS, IMAGING DATA PRODUCTS, AND MOSAICS , 2011, 1105.3754.

[12]  J. Newman,et al.  Galaxy formation and evolution science in the era of the Large Synoptic Survey Telescope , 2019, Nature Reviews Physics.

[13]  Awad Aubad,et al.  Towards a framework building for social systems modelling , 2020 .

[14]  Neil Davey,et al.  An automatic taxonomy of galaxy morphology using unsupervised machine learning , 2017, 1709.05834.

[15]  Ralf Bender,et al.  THE SLOPE OF THE BLACK HOLE MASS VERSUS VELOCITY DISPERSION CORRELATION , 2002, astro-ph/0203468.

[16]  Stijn Wuyts,et al.  WHAT TURNS GALAXIES OFF? THE DIFFERENT MORPHOLOGIES OF STAR-FORMING AND QUIESCENT GALAXIES SINCE z ∼ 2 FROM CANDELS , 2011, 1110.3786.

[17]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[18]  Kirpal Nandra,et al.  CANDELS: CONSTRAINING THE AGN–MERGER CONNECTION WITH HOST MORPHOLOGIES AT z ∼ 2 , 2011, 1109.2588.

[19]  Marijn Franx,et al.  THE SIZE EVOLUTION OF GALAXIES SINCE Z ∼ 3: COMBINING SDSS, GEMS AND FIRES 1 , 2006 .

[20]  John E. Krist,et al.  20 years of Hubble Space Telescope optical modeling using Tiny Tim , 2011 .

[21]  Masami Ouchi,et al.  MORPHOLOGIES OF ∼190,000 GALAXIES AT z = 0–10 REVEALED WITH HST LEGACY DATA. I. SIZE EVOLUTION , 2015, 1503.07481.

[22]  Donald W. Sweeney,et al.  LSST Science Book, Version 2.0 , 2009, 0912.0201.

[23]  Sugata Kaviraj,et al.  Galaxy Zoo: Major Galaxy Mergers Are Not a Significant Quenching Pathway , 2017, 1708.00866.

[24]  P. Madau,et al.  A NEW NONPARAMETRIC APPROACH TO GALAXY MORPHOLOGICAL CLASSIFICATION , 2003, astro-ph/0311352.

[25]  Thomas Brox,et al.  U-Net: Convolutional Networks for Biomedical Image Segmentation , 2015, MICCAI.

[26]  Michael J. Smith,et al.  Generative deep fields: arbitrarily sized, random synthetic astronomical images through deep learning , 2019, Monthly Notices of the Royal Astronomical Society.

[27]  Gregory F. Snyder,et al.  Large Synoptic Survey Telescope Galaxies Science Roadmap , 2017 .

[28]  C. Conselice,et al.  Mass assembly and morphological transformations since z ∼ 3 from CANDELS , 2016, 1606.04952.

[29]  M. Huertas-Company,et al.  Deep Learning Identifies High-z Galaxies in a Central Blue Nugget Phase in a Characteristic Mass Range , 2018, 1804.07307.

[30]  R. Bender,et al.  Dynamically hot galaxies. I - Structural properties , 1992 .

[31]  Guido Rossum,et al.  Python Reference Manual , 2000 .

[32]  Annalisa Pillepich,et al.  The Hubble Sequence at z ∼ 0 in the IllustrisTNG simulation with deep learning , 2019, Monthly Notices of the Royal Astronomical Society.

[33]  Maria Wimmer,et al.  Fully Convolutional Architectures for Multiclass Segmentation in Chest Radiographs , 2017, IEEE Transactions on Medical Imaging.

[34]  Kyle W. Willett,et al.  Integrating human and machine intelligence in galaxy morphology classification tasks , 2018, 1802.08713.

[35]  Puragra Guhathakurta,et al.  The DEEP3 Galaxy Redshift Survey: the impact of environment on the size evolution of massive early-type galaxies at intermediate redshift , 2011, 1109.5698.

[36]  Joel R. Primack,et al.  The formation of bulges, discs and two-component galaxies in the CANDELS Survey at z < 3 , 2016, 1606.07405.

[37]  C. Lintott,et al.  Galaxy Zoo:CANDELS barred discs and bar fractions , 2014, 1409.1214.

[38]  Marijn Franx,et al.  The Hubble Legacy Fields (HLF-GOODS-S) v1.5 Data Products: Combining 2442 Orbits of GOODS-S/CDF-S Region ACS and WFC3/IR Images , 2016 .

[39]  Takashi Ichikawa,et al.  THE EVOLUTION OF GALAXY SIZE AND MORPHOLOGY AT z ∼ 0.5–3.0 IN THE GOODS-N REGION WITH HUBBLE SPACE TELESCOPE/WFC3 DATA , 2014, 1402.5752.

[40]  M. S. Roberts,et al.  Physical Parameters Along the Hubble Sequence , 1994 .

[41]  Sergey Ioffe,et al.  Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift , 2015, ICML.

[42]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[43]  J. Trump,et al.  CANDELS VISUAL CLASSIFICATIONS: SCHEME, DATA RELEASE, AND FIRST RESULTS , 2014, 1401.2455.

[44]  Martín Abadi,et al.  TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems , 2016, ArXiv.

[45]  Konrad Kuijken,et al.  THE LUMINOSITY-SIZE AND MASS-SIZE RELATIONS OF GALAXIES OUT TO z ~ 3 , 2004 .

[46]  Mari Kawakatsu,et al.  MORPHOLOGY AND THE COLOR–MASS DIAGRAM AS CLUES TO GALAXY EVOLUTION AT z ∼ 1 , 2017, 1701.04716.

[47]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[48]  Patrick Putzky,et al.  Analyzing interferometric observations of strong gravitational lenses with recurrent and convolutional neural networks , 2018, 1808.00011.

[49]  S. Ravindranath,et al.  CANDELS: THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY—THE HUBBLE SPACE TELESCOPE OBSERVATIONS, IMAGING DATA PRODUCTS, AND MOSAICS , 2011, 1105.3753.

[50]  Marc Huertas-Company,et al.  A catalog of polychromatic bulge-disc decompositions of ∼17.600 galaxies in CANDELS , 2018, 1803.10234.

[51]  Shannon G. Patel,et al.  3D-HST WFC3-SELECTED PHOTOMETRIC CATALOGS IN THE FIVE CANDELS/3D-HST FIELDS: PHOTOMETRY, PHOTOMETRIC REDSHIFTS, AND STELLAR MASSES , 2014, 1403.3689.

[52]  Laurence Perreault Levasseur,et al.  Fast automated analysis of strong gravitational lenses with convolutional neural networks , 2017, Nature.

[53]  Bruce G. Elmegreen,et al.  Galaxy Morphologies in the Hubble Ultra Deep Field: Dominance of Linear Structures at the Detection Limit , 2005 .

[54]  Gilles Bertrand,et al.  Topological gray-scale watershed transformation , 1997, Optics & Photonics.

[55]  R. Nichol,et al.  The Dark Energy Survey: more than dark energy - an overview , 2016, 1601.00329.

[56]  E. Decenciere,et al.  Deep learning for galaxy surface brightness profile fitting , 2017, Monthly Notices of the Royal Astronomical Society.

[57]  C. Lintott,et al.  Galaxy Zoo: morphological classifications for 120 000 galaxies in HST legacy imaging , 2016, 1610.03068.

[58]  Jason Rhodes,et al.  Scientific Synergy between LSST and Euclid , 2017, The Astrophysical Journal Supplement Series.

[59]  R. C. Smith,et al.  A catalogue of structural and morphological measurements for DES Y1 , 2018, Monthly Notices of the Royal Astronomical Society.

[60]  C. Lintott,et al.  Galaxy Zoo 2: detailed morphological classifications for 304,122 galaxies from the Sloan Digital Sky Survey , 2013, 1308.3496.

[61]  V. A. Bruce,et al.  The bulge-disc decomposition of AGN host galaxies , 2015, 1510.03870.

[62]  Marijn Franx,et al.  Structure and Star Formation in Galaxies out to z = 3: Evidence for Surface Density Dependent Evolution and Upsizing , 2008, 0808.2642.

[63]  Richard Hans Robert Hahnloser,et al.  Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit , 2000, Nature.

[64]  R. Nichol,et al.  Euclid Definition Study Report , 2011, 1110.3193.

[65]  Michael S. Bernstein,et al.  ImageNet Large Scale Visual Recognition Challenge , 2014, International Journal of Computer Vision.

[66]  D. Gerdes,et al.  Transfer learning for galaxy morphology from one survey to another , 2018, Monthly Notices of the Royal Astronomical Society.

[67]  M. Franx,et al.  Hubble Space Telescope and Spitzer Imaging of Red and Blue Galaxies at z ~ 2.5: A Correlation between Size and Star Formation Activity from Compact Quiescent Galaxies to Extended Star-forming Galaxies , 2007, 0707.4484.

[68]  Yarin Gal,et al.  Galaxy Zoo: Probabilistic Morphology through Bayesian CNNs and Active Learning , 2019, Monthly Notices of the Royal Astronomical Society.

[69]  Guillermo Barro,et al.  The Isophotal Structure of Star-forming Galaxies at 0.5 < z < 1.8 in CANDELS: Implications for the Evolution of Galaxy Structure , 2018, 1802.07930.

[70]  B. C. Kelly,et al.  MORPHOLOGICAL CLASSIFICATION OF GALAXIES BY SHAPELET DECOMPOSITION IN THE SLOAN DIGITAL SKY SURVEY. II. MULTIWAVELENGTH CLASSIFICATION , 2005 .

[71]  Xiaopan Zhu,et al.  Galaxy morphology classification with deep convolutional neural networks , 2018, Astrophysics and Space Science.

[72]  Chien Y. Peng,et al.  STRUCTURAL PARAMETERS OF GALAXIES IN CANDELS , 2012, 1211.6954.

[73]  Kirpal Nandra,et al.  CANDELS MULTI-WAVELENGTH CATALOGS: SOURCE DETECTION AND PHOTOMETRY IN THE GOODS-SOUTH FIELD , 2013, 1308.4405.

[74]  R. Abraham,et al.  The Morphological Evolution of Galaxies , 2001, Science.

[75]  Ben Forrest,et al.  Effect of Local Environment and Stellar Mass on Galaxy Quenching and Morphology at 0.5 < z < 2.0 , 2017, 1706.03780.

[76]  Jeffrey Kruk,et al.  Photometric Redshift Calibration Requirements for WFIRST Weak-lensing Cosmology: Predictions from CANDELS , 2018, The Astrophysical Journal.

[77]  Ray M. Sharples,et al.  A Catalog of Morphological Types in 10 Distant Rich Clusters of Galaxies , 1996, astro-ph/9611210.

[78]  Chris J. Willott,et al.  The JWST Extragalactic Mock Catalog: Modeling Galaxy Populations from the UV through the Near-IR over 13 Billion Years of Cosmic History , 2018, 1802.05272.

[79]  Roberto E. Gonz'alez,et al.  Galaxy detection and identification using deep learning and data augmentation , 2018, Astron. Comput..

[80]  R. Davies,et al.  Spectroscopy and photometry of elliptical galaxies. I: a new distance estimator , 1987 .

[81]  Henry C. Ferguson,et al.  CANDELS: THE CORRELATION BETWEEN GALAXY MORPHOLOGY AND STAR FORMATION ACTIVITY AT z ∼ 2 , 2013, 1306.4980.

[82]  H. Rix,et al.  The James Webb Space Telescope , 2006, astro-ph/0606175.

[83]  Lin Lin,et al.  The evolution of galaxy shapes in CANDELS: from prolate to discy , 2018, Monthly Notices of the Royal Astronomical Society.

[84]  G. Vaucouleurs Classification and Morphology of External Galaxies , 1959 .

[85]  Sébastien Ourselin,et al.  Generalised Dice overlap as a deep learning loss function for highly unbalanced segmentations , 2017, DLMIA/ML-CDS@MICCAI.

[86]  Mariska Kriek,et al.  THE RELATION BETWEEN GALAXY STRUCTURE AND SPECTRAL TYPE: IMPLICATIONS FOR THE BUILDUP OF THE QUIESCENT GALAXY POPULATION AT 0.5 < z < 2.0 , 2016, 1601.02629.

[87]  C. J. Conselice,et al.  Major mergers are not significant drivers of star formation or morphological transformation around the epoch of peak cosmic star formation , 2016, 1608.03892.

[88]  Marijn Franx,et al.  TIGHT CORRELATIONS BETWEEN MASSIVE GALAXY STRUCTURAL PROPERTIES AND DYNAMICS: THE MASS FUNDAMENTAL PLANE WAS IN PLACE BY z ∼ 2 , 2013, 1309.6638.

[89]  Karl Glazebrook,et al.  The Size Evolution of Star-forming Galaxies since z ∼ 7 Using ZFOURGE , 2016, 1612.05262.

[90]  N. R. Tanvir,et al.  Galaxy morphology to I = 25 mag in the Hubble Deep Field , 1996 .

[91]  M. Franx,et al.  NICMOS Imaging of DRGs in the HDF-S: A Relation between Star Formation and Size at z ~ 2.5 , 2006 .

[92]  H. Rix,et al.  GALAXY STRUCTURE AS A DRIVER OF THE STAR FORMATION SEQUENCE SLOPE AND SCATTER , 2015, 1508.04771.

[93]  A. K. Inoue,et al.  The Hyper Suprime-Cam SSP Survey: Overview and Survey Design , 2017, 1704.05858.

[94]  A. Dressler Galaxy morphology in rich clusters: Implications for the formation and evolution of galaxies , 1980 .

[95]  Francisco Valdes,et al.  The Morphologies of Distant Galaxies. I. an Automated Classification System , 1994 .

[96]  Wolfgang Voges,et al.  The size distribution of galaxies in the Sloan Digital Sky Survey , 2003, astro-ph/0301527.

[97]  Emmanuelle Gouillart,et al.  scikit-image: image processing in Python , 2014, PeerJ.

[98]  Christopher J. Conselice,et al.  The Relationship between Stellar Light Distributions of Galaxies and Their Formation Histories , 2003 .

[99]  M. Cirasuolo,et al.  The Morphologies of Massive Galaxies at 1, 2012, Proceedings of the International Astronomical Union.

[100]  Chien Y. Peng,et al.  DETAILED DECOMPOSITION OF GALAXY IMAGES. II. BEYOND AXISYMMETRIC MODELS , 2009, 0912.0731.

[101]  Brandon C. Kelly,et al.  Morphological Classification of Galaxies by Shapelet Decomposition in the Sloan Digital Sky Survey , 2004 .

[102]  D. Wake,et al.  3D-HST+CANDELS: THE EVOLUTION OF THE GALAXY SIZE–MASS DISTRIBUTION SINCE z = 3 , 2014, 1404.2844.

[103]  Sugata Kaviraj,et al.  Galaxy Zoo: the dependence of the star formation–stellar mass relation on spiral disc morphology , 2015, 1502.03444.

[104]  Seyed-Ahmad Ahmadi,et al.  V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation , 2016, 2016 Fourth International Conference on 3D Vision (3DV).

[105]  Max Welling,et al.  Data-driven Reconstruction of Gravitationally Lensed Galaxies Using Recurrent Inference Machines , 2019, The Astrophysical Journal.

[106]  Jürgen Schmidhuber,et al.  Multi-column deep neural networks for image classification , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[107]  S. Djorgovski,et al.  Fundamental Properties of Elliptical Galaxies , 1987 .

[108]  Marc Huertas-Company,et al.  Photometry of high-redshift blended galaxies using deep learning , 2019, Monthly Notices of the Royal Astronomical Society.

[109]  Adam O. Kalinich,et al.  MAPPING THE GALAXY COLOR–REDSHIFT RELATION: OPTIMAL PHOTOMETRIC REDSHIFT CALIBRATION STRATEGIES FOR COSMOLOGY SURVEYS , 2015, 1509.03318.

[110]  C. Lintott,et al.  Galaxy Zoo: Quantitative visual morphological classifications for 48 000 galaxies from CANDELS , 2016, 1610.03070.

[111]  Miguel de Val-Borro,et al.  The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package , 2018, The Astronomical Journal.

[112]  J. B. Oke,et al.  Secondary standard stars for absolute spectrophotometry , 1983 .

[113]  Pieter van Dokkum,et al.  A New View of the Size–Mass Distribution of Galaxies: Using r20 and r80 Instead of r50 , 2019, The Astrophysical Journal.

[114]  C. Lintott,et al.  Galaxy Zoo: morphologies derived from visual inspection of galaxies from the Sloan Digital Sky Survey , 2008, 0804.4483.

[115]  A. Koekemoer,et al.  GALAXY STRUCTURE AND MODE OF STAR FORMATION IN THE SFR–MASS PLANE FROM z ∼ 2.5 TO z ∼ 0.1 , 2011, 1107.0317.

[116]  Gregory F. Snyder,et al.  Beyond spheroids and discs: classifications of CANDELS galaxy structure at 1.4 < z < 2 via principal component analysis , 2015, 1504.01751.

[117]  S. M. Fall,et al.  The Wide Field Infrared Survey Telescope: 100 Hubbles for the 2020s , 2019, 1902.05569.

[118]  Casey Papovich,et al.  The Luminosity, Stellar Mass, and Number Density Evolution of Field Galaxies of Known Morphology from z = 0.5 to 3 , 2004, astro-ph/0405001.

[119]  Brandon C. Kelly,et al.  Data mining for gravitationally lensed quasars , 2014, 1410.4565.

[120]  John Kormendy,et al.  Brightness distributions in compact and normal galaxies. II. Structure parameters of the spheroidal component. , 1977 .

[121]  Jr.,et al.  Evolution since z = 0.5 of the Morphology-Density Relation for Clusters of Galaxies , 1997, astro-ph/9707232.

[122]  James Binney,et al.  On the rotation of elliptical galaxies , 1978 .

[123]  D. Wake,et al.  THE GROWTH OF MASSIVE GALAXIES SINCE z = 2 , 2009, 0912.0514.

[124]  Santiago,et al.  A CATALOG OF VISUAL-LIKE MORPHOLOGIES IN THE 5 CANDELS FIELDS USING DEEP LEARNING , 2015, 1509.05429.

[125]  Geoffrey E. Hinton,et al.  Learning representations by back-propagating errors , 1986, Nature.