Single-strips for fast interactive rendering

Representing a triangulated two manifold using a single triangle strip is an NP-complete problem. By introducing a few Steiner vertices, recent works find such a single-strip, and hence a linear ordering of edge-connected triangles of the entire triangulation. In this paper, we extend previous results [10] that exploit this linear ordering in efficient triangle-strip management for high-performance rendering. We present new algorithms to generate single-strip representations that follow different user defined constraints or preferences in the form of edge weights. These functional constraints are application dependent. For example, normal-based constraints can be used for efficient rendering after visibility culling, or spatial constraints for highly coherent vertex-caching. We highlight the flexibility of this approach by generating single-strips with preferences as arbitrary as the orientation of the edges. We also present a hierarchical single-strip management strategy for high-performance interactive 3D rendering.

[1]  David Kornmann FAST AND SIMPLE TRIANGLE STRIP GENERATION , 1999 .

[2]  A. James Stewart,et al.  Tunneling for Triangle Strips in Continuous Level--of--Detail Meshes , 2001, Graphics Interface.

[3]  Hiromasa Suzuki,et al.  Making Papercraft Toys from Meshes using Strip-based Approximate Unfolding , 2004 .

[4]  Luiz Velho,et al.  Hierarchical generalized triangle strips , 1999, The Visual Computer.

[5]  Craig Gotsman,et al.  Universal Rendering Sequences for Transparent Vertex Caching of Progressive Meshes , 2002, Comput. Graph. Forum.

[6]  Michael Garland,et al.  Hierarchical face clustering on polygonal surfaces , 2001, I3D '01.

[7]  Ivana Kolingerová,et al.  Multi-path algorithm for triangle strips , 2004 .

[8]  J. Petersen Die Theorie der regulären graphs , 1891 .

[9]  Jihad El-Sana,et al.  Skip Strips: maintaining triangle strips for view-dependent rendering , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[10]  R. Ravi,et al.  Approximating Maximum Leaf Spanning Trees in Almost Linear Time , 1998, J. Algorithms.

[11]  William J. Cook,et al.  Computing Minimum-Weight Perfect Matchings , 1999, INFORMS J. Comput..

[12]  Meenakshisundaram Gopi,et al.  Hierarchyless Simplification, Stripification and Compression of Triangulated Two‐Manifolds , 2005, Comput. Graph. Forum.

[13]  Kok-Lim Low,et al.  Model simplification using vertex-clustering , 1997, SI3D.

[14]  Taku Komura,et al.  Topology matching for fully automatic similarity estimation of 3D shapes , 2001, SIGGRAPH.

[15]  David Eppstein,et al.  Single-strip triangulation of manifolds with arbitrary topology , 2004, SCG '04.

[16]  William Pugh,et al.  Skip Lists: A Probabilistic Alternative to Balanced Trees , 1989, WADS.

[17]  Joseph S. B. Mitchell,et al.  Fast and effective stripification of polygonal surface models , 1999, SODA '99.

[18]  Meenakshisundaram Gopi Controllable single-strip generation for triangulated surfaces , 2004, 12th Pacific Conference on Computer Graphics and Applications, 2004. PG 2004. Proceedings..

[19]  Miguel Chover,et al.  Multiresolution Triangle Strips , 2001, VIIP.

[20]  Mike M. Chow Optimized geometry compression for real-time rendering , 1997 .

[21]  Meenakshisundaram Gopi,et al.  Quadrilateral and tetrahedral mesh stripification using 2-factor partitioning of the dual graph , 2005, The Visual Computer.

[22]  Jung Hong Chuang Level of Detail for 3D Graphics , 2002 .

[23]  Renato Pajarola,et al.  DStrips: dynamic triangle strips for real-time mesh simplification and rendering , 2003, 11th Pacific Conference onComputer Graphics and Applications, 2003. Proceedings..

[24]  Samir Khuller,et al.  Approximation Algorithms for Connected Dominating Sets , 1996, Algorithmica.

[25]  Meenakshisundaram Gopi,et al.  Constrained strip generation and management for efficient interactive 3D rendering , 2005, International 2005 Computer Graphics.

[26]  Michael B. Dillencourt,et al.  Finding Hamiltonian Cycles in Delaunay Triangulations Is NP-complete , 1996, Discret. Appl. Math..

[27]  David P. Luebke,et al.  View-dependent simplification of arbitrary polygonal environments , 1997, SIGGRAPH.

[28]  Steven Skiena,et al.  Hamiltonian triangulations for fast rendering , 1996, The Visual Computer.

[29]  Michael Deering,et al.  Geometry compression , 1995, SIGGRAPH.

[30]  Mathieu Desbrun,et al.  Variational shape approximation , 2004, SIGGRAPH 2004.

[31]  Dinesh Manocha,et al.  Cache-oblivious mesh layouts , 2005, ACM Trans. Graph..

[32]  Hugues Hoppe,et al.  Optimization of mesh locality for transparent vertex caching , 1999, SIGGRAPH.

[33]  Renato Pajarola,et al.  QuadTIN: quadtree based triangulated irregular networks , 2002, IEEE Visualization, 2002. VIS 2002..

[34]  Steven Skiena,et al.  Optimizing triangle strips for fast rendering , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[35]  Reuven Bar-Yehuda,et al.  Time/space tradeoffs for polygon mesh rendering , 1996, TOGS.