Is the Mandelbrot set computable?

This work is concerned with the question whether the Mandelbrot set is computable. The computability notions that we consider are studied in computable analysis and will be introduced and discussed. We show that the exterior of the Mandelbrot set, the boundary of the Mandelbrot set, and the hyperbolic components satisfy certain natural computability conditions. We conclude that the two-sided distance function of the Mandelbrot set is computable if the famous hyperbolicity conjecture is true. We also formulate the question whether the distance function of the Mandelbrot set is computable in terms of the escape time. (© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

[1]  Klaus Weihrauch,et al.  The computational complexity of some julia sets , 2002, STOC '03.

[2]  Ning Zhong Recursively Enumerable Subsets of Rq in Two Computing Models: Blum-Shub-Smale Machine and Turing Machine , 1998, Theor. Comput. Sci..

[3]  C. V. L. Charlier,et al.  Periodic Orbits , 1898, Nature.

[4]  Roger Penrose,et al.  Précis of The Emperor's New Mind: Concerning computers, minds, and the laws of physics , 1990, Behavioral and Brain Sciences.

[5]  Anil Nerode,et al.  On Extreme Points of Convex Compact Turing Located Set , 1994, LFCS.

[6]  Klaus Weihrauch,et al.  Computability on Subsets of Euclidean Space I: Closed and Compact Subsets , 1999, Theor. Comput. Sci..

[7]  Irwin Jungreis The uniformization of the complement of the Mandelbrot set , 1985 .

[8]  Ernst Specker,et al.  The Fundamental Theorem of Algebra in Recursive Analysis , 1990 .

[9]  Harvey M. Friedman,et al.  Algorithmic Procedures, Generalized Turing Algorithms, and Elementary Recursion Theory , 1971 .

[10]  Henry C. Thacher,et al.  Applied and Computational Complex Analysis. , 1988 .

[11]  Richard A. Shore RECURSIVELY ENUMERABLE SETS AND DEGREES A Study of Computably Generated Sets (Perspectives in Mathematical Logic) , 1988 .

[12]  Heinz-Otto Peitgen,et al.  The science of fractal images , 2011 .

[13]  Kenneth W. Regan,et al.  Computability , 2022, Algorithms and Theory of Computation Handbook.

[14]  Vasco Brattka The Emperor's New Recursiveness: The Epigraph of the Exponential Function in Two Models of Computability , 2000, Words, Languages & Combinatorics.

[15]  Ker-I Ko,et al.  Complexity Theory of Real Functions , 1991, Progress in Theoretical Computer Science.

[16]  Klaus Weihrauch,et al.  Computability on Computable Metric Spaces , 1993, Theor. Comput. Sci..

[17]  Marian Boykan Pour-El,et al.  Computability in analysis and physics , 1989, Perspectives in Mathematical Logic.

[18]  Ker-I Ko,et al.  A Polynomial-Time Computable Curve whose Interior has a Nonrecursive Measure , 1995, Theor. Comput. Sci..

[19]  Mitsuhiro Shishikura The Hausdorff dimension of the boundary of the Mandelbrot set and Julia sets , 1991 .

[20]  Michael Barr,et al.  The Emperor's New Mind , 1989 .

[21]  J. Milnor Periodic Orbits, Externals Rays and the Mandelbrot Set: An Expository Account , 1999, Astérisque.

[22]  H. Stowell The emperor's new mind R. Penrose, Oxford University Press, New York (1989) 466 pp. $24.95 , 1990, Neuroscience.

[23]  A. Douady,et al.  Étude dynamique des polynômes complexes , 1984 .

[24]  Lenore Blum,et al.  Complexity and Real Computation , 1997, Springer New York.

[25]  R. O. Gandy,et al.  COMPUTABILITY IN ANALYSIS AND PHYSICS (Perspectives in Mathematical Logic) , 1991 .

[26]  R. Soare Recursively enumerable sets and degrees , 1987 .

[27]  A. Klebanoff π IN THE MANDELBROT SET , 2001 .

[28]  Yuval Fisher Exploring the Mandelbrot set , 1988 .

[29]  D. Schleicher Rational Parameter Rays of the Mandelbrot Set , 1997, Astérisque.

[30]  S. Smale,et al.  The Gödel Incompleteness Theorem and Decidability over a Ring , 1993 .

[31]  Peter Hertling,et al.  The Effective Riemann Mapping Theorem , 1999, Theor. Comput. Sci..

[32]  S. Smale,et al.  On a theory of computation and complexity over the real numbers; np-completeness , 1989 .

[33]  D. C. Cooper,et al.  Theory of Recursive Functions and Effective Computability , 1969, The Mathematical Gazette.

[34]  Klaus Weihrauch,et al.  Computable Analysis: An Introduction , 2014, Texts in Theoretical Computer Science. An EATCS Series.