SPATIAL DEPENDENCE AND SPATIAL STRUCTURAL INSTABILITY IN APPLIED REGRESSION ANALYSIS

The stability of regression coefficients over the observation set (“regional homogeneity”) is typically assessed by means of a Chow test or within a seemingly unrelated regression (SUR) framework. When spatial error autocorrelation is present in cross-sectional equations the traditional tests are no longer applicable. I evaluate this both in formal terms as well as empirically. I introduce a taxonomy of spatial effects in models for structural instability, and discuss its implication for testing. I compare the performance of traditional tests, robust approaches, maximum-likelihood procedures and pretest techniques by means of a series of simple Monte Carlo experiments.

[1]  R. Quandt The Estimation of the Parameters of a Linear Regression System Obeying Two Separate Regimes , 1958 .

[2]  G. Chow Tests of equality between sets of coefficients in two linear regressions (econometrics voi 28 , 1960 .

[3]  A. Zellner An Efficient Method of Estimating Seemingly Unrelated Regressions and Tests for Aggregation Bias , 1962 .

[4]  L. Johnson A NOTE ON TESTING FOR INTRAREGIONAL ECONOMIC HOMOGENEITY , 1975 .

[5]  Stanley R. Johnson,et al.  Urban spatial structure : an analysis with a varying coefficient model / BEBR No. 339 , 1976 .

[6]  S. Arora,et al.  Alternative Approaches to Spatial Autocorrelation: An Improvement Over Current Practice , 1977 .

[7]  TESTING FOR INTRAREGIONAL ECONOMIC HOMOGENEITY: A COMMENT* , 1977 .

[8]  J. Kau,et al.  A random coefficient model to estimate a stochastic density gradient , 1977 .

[9]  J. Magnus Maximum likelihood estimation of the GLS model with unknown parameters in the disturbance covariance matrix , 1978 .

[10]  Leen Hordijk,et al.  Problems in estimating econometric relations in space , 1979 .

[11]  Trevor Breusch,et al.  Useful invariance results for generalized regression models , 1980 .

[12]  Jean-Marie Dufour Generalized Chow Tests for Structural Change: a Coordinate-Free Approach , 1982 .

[13]  Jan K. Brueckner TESTING A VINTAGE MODEL OF URBAN GROWTH , 1981 .

[14]  R. Quandt Autocorrelated errors in simple disequilibrium models , 1981 .

[15]  Geoffrey J. D. Hewings,et al.  SPACE‐TIME EMPLOYMENT MODELING: SOME RESULTS USING SEEMINGLY UNRELATED REGRESSION ESTIMATORS* , 1982 .

[16]  Richard E. Quandt,et al.  Econometric disequilibrium models , 1982 .

[17]  G. Maddala Limited-dependent and qualitative variables in econometrics: Introduction , 1983 .

[18]  J. Kau,et al.  Structural shifts in urban population density gradients: an empirical investigation. , 1983, Journal of urban economics.

[19]  M. King,et al.  Autocorrelation pre-testing in the linear model: Estimation, testing and prediction , 1984 .

[20]  A switching regression analysis of urban population densities: Preliminary results , 1985 .

[21]  Benjamin H. Stevens,et al.  The TFS regional modelling methodology , 1985 .

[22]  An-loh Lin A NOTE ON TESTING FOR REGIONAL HOMOGENEITY OF A PARAMETER , 1985 .

[23]  J. Brueckner,et al.  A switching regression analysis of urban population densities: Preliminary results , 1986, Journal of urban economics.

[24]  Emilio Casetti,et al.  The Dual Expansion Method: An Application for Evaluating the Effects of Population Growth on Development , 1986, IEEE Transactions on Systems, Man, and Cybernetics.

[25]  D. Giles,et al.  A REGIONAL CONSUMER DEMAND MODEL FOR NEW ZEALAND , 1987 .

[26]  ONCE AGAIN: TESTING FOR REGIONAL HOMOGENEITY* , 1987 .

[27]  Luc Anselin,et al.  Do spatial effects really matter in regression analysis , 2005 .

[28]  Timothy J. Fik,et al.  Hierarchical interaction: The modeling of a competing central place system , 1988 .

[29]  Luc Anselin,et al.  Model Validation in Spatial Econometrics: A Review and Evaluation of Alternative Approaches , 1988 .

[30]  L. Anselin A test for spatial autocorrelation in seemingly unrelated regressions , 1988 .

[31]  Luc Anselin,et al.  Some robust approaches to testing and estimation in spatial econometrics , 1990 .