Oxygen saturation measurements of the retinal vasculature in treated asymmetrical primary open-angle glaucoma using hyperspectral imaging

PurposeTo determine whether there are differences in retinal vascular oxygen saturation measurements, estimated using a hyperspectral fundus camera, between normal eyes and treated eyes of subjects with asymmetrical primary open-angle glaucoma (POAG).MethodsA noninvasive hyperspectral fundus camera was used to acquire spectral images of the retina at wavelengths between 556 and 650 nm in 2-nm increments. In total, 14 normal eyes and both eyes of 11 treated POAG subjects were imaged and analyzed using algorithms that use the spectral variation of the optical densities of blood vessels to estimate the oxygen saturation of blood within the retinal vasculature. In the treated POAG group, each of the eyes were categorized, based on the mean deviation of the Humphrey visual-field analyzer result, as either more-advanced or less-advanced, glaucomatous eyes. Unpaired t-tests (two-tailed) with Welch’s correction were used to compare the mean oxygen saturation between the normal subjects and the treated POAG subgroups.ResultsIn less-advanced and more-advanced-treated POAG eyes, mean retinal venular oxygen saturations (48.2±21.6% and 42.6±18.8%, respectively) were significantly higher than in normal eyes (27.9±9.9%; P=0.03 and 0.01, respectively). Arteriolar oxygen saturation was not significantly different between normal eyes and treated POAG eyes.ConclusionsThe increased oxygen saturation of the retinal venules in advanced-treated POAG eyes may indicate reduced metabolic consumption of oxygen in the inner retinal tissues.

[1]  R. Hesse,et al.  The relationship between progression of visual field defects and retrobulbar circulation in patients with glaucoma. , 1997, American journal of ophthalmology.

[2]  E. Erdfelder,et al.  Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses , 2009, Behavior research methods.

[3]  F. Sarnquist,et al.  ACCURACY OF A NEW NON-INVASIVE OXYGEN SATURATION MONITOR , 1980 .

[4]  E. Stefánsson,et al.  Optic nerve oxygen tension in pigs and the effect of carbonic anhydrase inhibitors. , 1999, Investigative ophthalmology & visual science.

[5]  Einar Stefánsson,et al.  Carbonic anhydrase inhibition increases retinal oxygen tension and dilates retinal vessels , 2005, Graefe's Archive for Clinical and Experimental Ophthalmology.

[6]  N. Drasdo,et al.  Electrophysiological evidence of early functional damage in glaucoma and ocular hypertension. , 2010, Investigative Ophthalmology and Visual Science.

[7]  Ernest Jt In vivo measurement of optic-disk oxygen tension. , 1973 .

[8]  H A Quigley,et al.  Foveal ganglion cell loss is size dependent in experimental glaucoma. , 1993, Investigative ophthalmology & visual science.

[9]  Gholam A. Peyman,et al.  Oxygen saturation levels in the juxta-papillary retina in eyes with glaucoma. , 2008, Experimental eye research.

[10]  J. T. Erichsen,et al.  Retinal ganglion cell remodelling in experimental glaucoma. , 2005, Advances in experimental medicine and biology.

[11]  Tiande Shou,et al.  Differential dendritic shrinkage of α and β retinal ganglion cells in cats with chronic glaucoma , 2003 .

[12]  Dietrich Schweitzer,et al.  Spectrometric investigations in ocular hypertension and early stages of primary open angle glaucoma and of low tension glaucoma — multisubstance analysis , 1992, International Ophthalmology.

[13]  J. T. Ernest,et al.  In vivo measurement of optic-disk oxygen tension. , 1973, Investigative ophthalmology.

[14]  木村 良造,et al.  副腎皮質ホルモン剤内服の人眼眼圧に及ぼす影響について-2-20例33眼のprimary open angle glaucomaについての推計学的考察 , 1975 .

[15]  Tiande Shou,et al.  Differential dendritic shrinkage of alpha and beta retinal ganglion cells in cats with chronic glaucoma. , 2003, Investigative ophthalmology & visual science.

[16]  H A Quigley,et al.  Retinal ganglion cell loss is size dependent in experimental glaucoma. , 1991, Investigative ophthalmology & visual science.

[17]  J. Beach,et al.  Hyperspectral imaging for measurement of oxygen saturation in the optic nerve head. , 2004, Investigative ophthalmology & visual science.

[18]  W. Green,et al.  Optic nerve damage in human glaucoma. II. The site of injury and susceptibility to damage. , 1981, Archives of ophthalmology.

[19]  Jon Atli Benediktsson,et al.  Automatic retinal oximetry. , 2006 .

[20]  Mateusz Scibor,et al.  Intravascular oxygen saturation in retinal vessels in normal subjects and open-angle glaucoma subjects. , 2006, Acta ophthalmologica Scandinavica.

[21]  P. Kaufman,et al.  Morphology of single ganglion cells in the glaucomatous primate retina. , 1998, Investigative ophthalmology & visual science.

[22]  J. T. Ernest,et al.  Autoregulation of optic-disk oxygen tension. , 1974, Investigative ophthalmology.

[23]  A. Augustin,et al.  The influence of intraocular pressure and systemic oxygen tension on the intravascular pO2 of the pig retina as measured with phosphorescence imaging. , 1997, Survey of ophthalmology.

[24]  L. Kagemann,et al.  A comparative study of the effects of brinzolamide and dorzolamide on retinal oxygen saturation and ocular microcirculation in patients with primary open-angle glaucoma , 2008, British Journal of Ophthalmology.

[25]  L. Kagemann,et al.  Ocular blood flow and oxygen delivery to the retina in primary open‐angle glaucoma patients: the addition of dorzolamide to timolol monotherapy , 2010, Acta ophthalmologica.

[26]  S. Sharma,et al.  Programmed cell death of retinal ganglion cells during experimental glaucoma. , 1995, Experimental eye research.

[27]  H. Quigley,et al.  Neuronal death in glaucoma , 1999, Progress in Retinal and Eye Research.

[28]  Evelien Vandewalle,et al.  Oximetry in glaucoma: correlation of metabolic change with structural and functional damage , 2012, Acta ophthalmologica.

[29]  Selective ganglion cell death in glaucoma. , 2000 .

[30]  J. Jonas,et al.  Decreased photoreceptor count in human eyes with secondary angle-closure glaucoma. , 1992, Investigative ophthalmology & visual science.

[31]  G. Dunkelberger,et al.  Chronic glaucoma selectively damages large optic nerve fibers. , 1987, Investigative ophthalmology & visual science.

[32]  Y. Yamazaki,et al.  The relationship between progression of visual field defects and retrobulbar circulation in patients with glaucoma. , 1997, American journal of ophthalmology.

[33]  R. Byrick,et al.  Pathophysiology and prevention of acute renal failure: the role of the anaesthetist , 1990, Canadian journal of anaesthesia = Journal canadien d'anesthesie.

[34]  K. Reinhart Monitoring O2 Transport and Tissue Oxygenation in Critically Ill Patient , 1989 .

[35]  F. Fitzke,et al.  Retinal ganglion cell apoptosis in glaucoma is related to intraocular pressure and IOP-induced effects on extracellular matrix. , 2005, Investigative ophthalmology & visual science.

[36]  Alistair Gorman,et al.  Generalization of the Lyot filter and its application to snapshot spectral imaging. , 2010, Optics express.

[37]  Evidence for glaucoma-induced horizontal cell alterations in the human retina. , 1996, German journal of ophthalmology.

[38]  H. Smithline,et al.  Venous hyperoxia after cardiac arrest. Characterization of a defect in systemic oxygen utilization. , 1992, Chest.

[39]  H. Quigley,et al.  Chronic experimental glaucoma in primates. II. Effect of extended intraocular pressure elevation on optic nerve head and axonal transport. , 1980, Investigative ophthalmology & visual science.

[40]  D. Zack,et al.  Retinal ganglion cell death in experimental glaucoma and after axotomy occurs by apoptosis. , 1995, Investigative ophthalmology & visual science.

[41]  D. Schweitzer,et al.  In vivo measurement of the oxygen saturation of retinal vessels in healthy volunteers , 1999, IEEE Transactions on Biomedical Engineering.

[42]  K. Reinhart,et al.  Clinical Aspects of O2 Transport and Tissue Oxygenation , 1989, Springer Berlin Heidelberg.

[43]  Lori M. Ventura,et al.  Pattern electroretinogram in glaucoma , 2006, Current opinion in ophthalmology.

[44]  Ron Ofri,et al.  Functional damage to inner and outer retinal cells in experimental glaucoma. , 2003, Investigative ophthalmology & visual science.

[45]  N. Osborne Pathogenesis of ganglion "cell death" in glaucoma and neuroprotection: focus on ganglion cell axonal mitochondria. , 2008, Progress in brain research.

[46]  Vaegan,et al.  Swelling and loss of photoreceptors in chronic human and experimental glaucomas. , 2000, Archives of ophthalmology.

[47]  F. Horn,et al.  The a-wave of the dark adapted electroretinogram in glaucomas: are photoreceptors affected? , 2001, The British journal of ophthalmology.

[48]  M. Boulton,et al.  Quantification of retinal transneuronal degeneration in human glaucoma: a novel multiphoton-DAPI approach. , 2008, Investigative ophthalmology & visual science.

[49]  R. D'Agostino,et al.  A Suggestion for Using Powerful and Informative Tests of Normality , 1990 .

[50]  K. Reinhart,et al.  The value of venous oximetry , 2005, Current opinion in critical care.

[51]  R. A. Karlsson,et al.  Dorzolamide–timolol combination and retinal vessel oxygen saturation in patients with glaucoma or ocular hypertension , 2009, British Journal of Ophthalmology.

[52]  G. Muyo,et al.  Validation of human whole blood oximetry, using a hyperspectral fundus camera with a model eye. , 2011, Investigative ophthalmology & visual science.

[53]  G Muyo,et al.  Spectral imaging of the retina , 2011, Eye.

[54]  Martina Meinke,et al.  Empirical model functions to calculate hematocrit-dependent optical properties of human blood. , 2007, Applied optics.

[55]  E. Stefánsson,et al.  Optic nerve oxygen tension: effects of intraocular pressure and dorzolamide , 2000, The British journal of ophthalmology.

[56]  Alon Harris,et al.  Retinal oximetry in primary open-angle glaucoma. , 2011, Investigative ophthalmology & visual science.

[57]  C. O'brien,et al.  Pulsatile ocular blood flow investigation in asymmetric normal tension glaucoma and normal subjects , 1998, The British journal of ophthalmology.

[58]  Hideya Uchida,et al.  Retinal ganglion cell death in experimental glaucoma , 2000, The British journal of ophthalmology.

[59]  C E Riva,et al.  Effect of acute increases in intraocular pressure on intravascular optic nerve head oxygen tension in cats. , 1992, Investigative ophthalmology & visual science.

[60]  Li Guo,et al.  Tracking longitudinal retinal changes in experimental ocular hypertension using the cSLO and spectral domain-OCT. , 2010, Investigative ophthalmology & visual science.

[61]  B. Schwartz,et al.  Evaluation of the Circulation in the Retina, Peripapillary Choroid and Optic Disk in Normal-Tension Glaucoma , 2000, Ophthalmic Research.

[62]  D. Zack,et al.  TUNEL-positive ganglion cells in human primary open-angle glaucoma. , 1997, Archives of ophthalmology.

[63]  Jon Atli Benediktsson,et al.  Glaucoma filtration surgery and retinal oxygen saturation. , 2009, Investigative ophthalmology & visual science.