The Riemann-Siegel expansion for the zeta function: high orders and remainders
暂无分享,去创建一个
[1] Harold M. Edwards,et al. Riemann's Zeta Function , 1974 .
[2] M. Berry,et al. Hyperasymptotics for integrals with saddles , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.
[3] M. Berry. Infinitely many Stokes smoothings in the gamma function , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.
[4] M. Berry,et al. Uniform asymptotic smoothing of Stokes’s discontinuities , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[5] J. Keating. The Riemann Zeta-Function and Quantum Chaology , 1993 .
[6] J. Keating,et al. A new asymptotic representation for ζ(½ + it) and quantum spectral determinants , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.
[7] T. Seligman,et al. Quantum Chaos and Statistical Nuclear Physics , 1986 .
[8] Richard P. Brent,et al. On the zeros of the Riemann zeta function in the critical strip , 1979 .
[9] R. Paris. An asymptotic representation for the Riemann zeta function on the critical line , 1994, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.
[10] R. Dingle. Asymptotic expansions : their derivation and interpretation , 1975 .
[11] M. Berry,et al. Unfolding the high orders of asymptotic expansions with coalescing saddles: singularity theory, crossover and duality , 1993, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.
[12] A. Odlyzko. On the distribution of spacings between zeros of the zeta function , 1987 .