DIRECT SUMS OF INFINITELY MANY KERNELS

Abstract Let 𝒦 be the class of all right R-modules that are kernels of nonzero homomorphisms φ:E1→E2 for some pair of indecomposable injective right R-modules E1,E2. In a previous paper, we completely characterized when two direct sums A1⊕⋯⊕An and B1⊕⋯⊕Bm of finitely many modules Ai and Bj in 𝒦 are isomorphic. Here we consider the case in which there are arbitrarily, possibly infinitely, many Ai and Bj in 𝒦. In both the finite and the infinite case, the behaviour is very similar to that which occurs if we substitute the class 𝒦 with the class 𝒰 of all uniserial right R-modules (a module is uniserial when its lattice of submodules is linearly ordered).

[1]  A. Amini,et al.  Direct summands of direct sums of modules whose endomorphism rings have two maximal right ideals , 2011 .

[2]  M. Kosan,et al.  KERNELS OF MORPHISMS BETWEEN INDECOMPOSABLE INJECTIVE MODULES , 2010, Glasgow Mathematical Journal.

[3]  A. Facchini,et al.  Couniformly Presented Modules and Dualities , 2010 .

[4]  B. Goldsmith,et al.  Models, Modules and Abelian Groups , 2008 .

[5]  I. Herzog Contravariant functors on the category of finitely presented modules , 2008 .

[6]  A. Amini,et al.  Equivalence of diagonal matrices over local rings , 2008 .

[7]  R. Göbel,et al.  Representations of the category of serial modules of finite Goldie dimension , 2008 .

[8]  S. Parvathi,et al.  Noncommutative rings, group rings, diagram algebras and their applications : international conference, December 18-22, 2006, University of Madras, Chennai, India , 2008 .

[9]  Stelios Charalambides,et al.  τ-Injective Modules , 2008 .

[10]  P. Př́ıhoda A Version of the Weak Krull–Schmidt Theorem for Infinite Direct Sums of Uniserial Modules , 2006 .

[11]  G. Puninski Some model theory over a nearly simple uniserial domain and decompositions of serial modules , 2001 .

[12]  A. Facchini Module Theory: Endomorphism rings and direct sum decompositions in some classes of modules , 1998 .

[13]  S. Jain,et al.  Advances in Ring Theory , 1997 .

[14]  N. Dung,et al.  Weak Krull)Schmidt for Infinite Direct Sums of Uniserial Modules , 1997 .

[15]  A. Facchini Krull-Schmidt fails for serial modules , 1996 .

[16]  P. Gabriel,et al.  Spektralkategorien und reguläre Ringe in Von-Neumannschen Sinn , 1966 .

[17]  R. Bumby Modules which are isomorphic to submodules of each other , 1965 .

[18]  G. Goes Lokale Konvergenzbedingugen für trigonometrische Reihen und für Potenzreihen , 1963 .