Non-volatile logic gates based on planar Hall effect in magnetic films with two in-plane easy axes

[1]  H. Ohno,et al.  Temperature dependence of in-plane magnetic anisotropy and anisotropic magnetoresistance in (Ga,Mn)As codoped with Li , 2016 .

[2]  N. Zhang,et al.  Piezo Voltage Controlled Planar Hall Effect Devices , 2015, Scientific Reports.

[3]  Michel Hehn,et al.  Extraordinary Hall effect based magnetic logic applications , 2015 .

[4]  J. P. Dehollain,et al.  A two-qubit logic gate in silicon , 2014, Nature.

[5]  Dong Uk Lee,et al.  Tunneling magnetoresistance from non-collinear alignment of magnetization in Fe/GaAlAs/GaMnAs magnetic tunnel junctions , 2013 .

[6]  A. Rushforth,et al.  Anisotropic Current-Controlled Magnetization Reversal in the Ferromagnetic Semiconductor (Ga,Mn)As , 2013, 1303.1907.

[7]  Suk Hee Han,et al.  Magnetic-field-controlled reconfigurable semiconductor logic , 2013, Nature.

[8]  X. Liu,et al.  Effect of pinning-field distribution on the process of magnetization reversal in Ga1−xMnxAs films , 2011 .

[9]  Sung Min Kim,et al.  A stacked memory device on logic 3D technology for ultra-high-density data storage , 2011, Nanotechnology.

[10]  L. Molenkamp,et al.  Fully electrical read-write device out of a ferromagnetic semiconductor. , 2010, Physical review letters.

[11]  H. Ohno,et al.  Current induced effective magnetic field and magnetization reversal in uniaxial anisotropy (Ga,Mn)As , 2010 .

[12]  Paolo Lugli,et al.  On-chip Extraordinary Hall-effect sensors for characterization of nanomagnetic logic devices , 2010 .

[13]  X. Liu,et al.  Mapping of magnetic anisotropy in strained ferromagnetic semiconductor GaMnAs films , 2010 .

[14]  X. Liu,et al.  Magnetization reorientation in Ga x Mn 1-x As films: Planar Hall effect measurements , 2010 .

[15]  S. Datta,et al.  Proposal for an all-spin logic device with built-in memory. , 2010, Nature nanotechnology.

[16]  Bernard Rodmacq,et al.  Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer. , 2010, Nature materials.

[17]  R. Mertens,et al.  Fast thermally assisted switching at low current density in (Ga,Mn)As magnetic tunnel junctions , 2010 .

[18]  Jacek K. Furdyna,et al.  Four discrete Hall resistance states in single-layer Fe film for quaternary memory devices , 2009 .

[19]  X. Liu,et al.  Quantitative analysis of the angle dependence of planar Hall effect observed in ferromagnetic GaMnAs film , 2009 .

[20]  X. Liu,et al.  Monitoring of magnetization processes in GaMnAs ferromagnetic film by electrical transport measurement , 2009 .

[21]  Jacek K. Furdyna,et al.  Evidence for reversible control of magnetization in a ferromagnetic material by means of spin–orbit magnetic field , 2008, 0812.3160.

[22]  B. Diény,et al.  Extraordinary Hall effect in thin magnetic films and its potential for sensors, memories and magnetic logic applications , 2008 .

[23]  X. Liu,et al.  Quantitative investigation of the magnetic anisotropy in GaMnAs film by using Hall measurement , 2008 .

[24]  X. Liu,et al.  Temperature dependence of magnetic anisotropy in ferromagnetic (Ga,Mn)As films: Investigation by the planar Hall effect , 2007 .

[25]  X. Liu,et al.  Tunable quaternary states in ferromagnetic semiconductor GaMnAs single layer for memory devices , 2007 .

[26]  X. Liu,et al.  Stable multidomain structures formed in the process of magnetization reversal in GaMnAs ferromagnetic semiconductor thin films. , 2007, Physical review letters.

[27]  X. Liu,et al.  Magnetization reversal in ( Ga , Mn ) As ∕ Mn O exchange-biased structures: Investigation by planar Hall effect , 2007 .

[28]  D Petit,et al.  Magnetic Domain-Wall Logic , 2005, Science.

[29]  X. Liu,et al.  Perpendicular magnetization reversal, magnetic anisotropy, multistep spin switching, and domain nucleation and expansion in Ga1−xMnxAs films , 2005, cond-mat/0505322.

[30]  K. Ku,et al.  Exchange Biasing of the Ferromagnetic Semiconductor Ga_1-xMn_xAs , 2003, cond-mat/0312259.

[31]  F. Matsukura,et al.  Temperature dependent magnetic anisotropy in (Ga, Mn)As layers , 2002, cond-mat/0410549.

[32]  X. Liu,et al.  Domain Structure and Magnetic Anisotropy in Ga1-xMnxAs , 2004 .

[33]  R. Moriya,et al.  Magnetotransport study of temperature dependent magnetic anisotropy in a (Ga,Mn)As epilayer , 2003 .

[34]  K. H. Ploog,et al.  Programmable computing with a single magnetoresistive element , 2003, Nature.

[35]  X. Liu,et al.  Magnetic domain structure and magnetic anisotropy in Ga1-xMn(x)As. , 2003, Physical review letters.

[36]  X. Liu,et al.  Curie temperature limit in ferromagnetic Ga1-xMnxAs , 2003, cond-mat/0303217.

[37]  M. Roukes,et al.  Giant planar Hall effect in epitaxial (Ga,Mn)as devices. , 2002, Physical review letters.

[38]  Y. Higo,et al.  Large Tunneling Magnetoresistance in GaMnAs / AlAs / GaMnAs Ferromagnetic Semiconductor Tunnel Junctions , 2001 .

[39]  W. Black,et al.  Programmable logic using giant-magnetoresistance and spin-dependent tunneling devices (invited) , 2000 .

[40]  R. Geiger,et al.  Field Programmable Logic Gates Using GMR Devices , 1997, 1997 IEEE International Magnetics Conference (INTERMAG'97).

[41]  R. Cowburn,et al.  Magnetic switching and in‐plane uniaxial anisotropy in ultrathin Ag/Fe/Ag(100) epitaxial films , 1995 .

[42]  E. Wohlfarth,et al.  A mechanism of magnetic hysteresis in heterogeneous alloys , 1948, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.