Thermodynamically consistent orthotropic activation model capturing ventricular systolic wall thickening in cardiac electromechanics

[1]  Alfio Quarteroni,et al.  Mathematical modelling of active contraction in isolated cardiomyocytes. , 2014, Mathematical medicine and biology : a journal of the IMA.

[2]  J. Wong,et al.  Generating fibre orientation maps in human heart models using Poisson interpolation , 2014, Computer methods in biomechanics and biomedical engineering.

[3]  Alfio Quarteroni,et al.  Fully Eulerian finite element approximation of a fluid‐structure interaction problem in cardiac cells , 2013 .

[4]  Jonas Stålhand,et al.  A continuum model for skeletal muscle contraction at homogeneous finite deformations , 2012, Biomechanics and Modeling in Mechanobiology.

[5]  Wolfgang A. Wall,et al.  Personalization of Cardiac Fiber Orientations from Image Data Using the Unscented Kalman Filter , 2013, FIMH.

[6]  Gernot Plank,et al.  Influence of myocardial fiber/sheet orientations on left ventricular mechanical contraction , 2013 .

[7]  D. Ennis,et al.  Left ventricular twist and shear-angle in patients with mitral regurgitation , 2013, Journal of Cardiovascular Magnetic Resonance.

[8]  Peter Kohl,et al.  Combining wet and dry research: experience with model development for cardiac mechano-electric structure-function studies , 2013, Cardiovascular research.

[9]  Kwai L. Wong,et al.  A Fully Coupled Model for Electromechanics of the Heart , 2012, Comput. Math. Methods Medicine.

[10]  Marcelo Epstein,et al.  The Elements of Continuum Biomechanics , 2012 .

[11]  Alfio Quarteroni,et al.  Orthotropic active strain models for the numerical simulation of cardiac biomechanics , 2012, International journal for numerical methods in biomedical engineering.

[12]  Davide Carlo Ambrosi,et al.  Active Stress vs. Active Strain in Mechanobiology: Constitutive Issues , 2012 .

[13]  A. Quarteroni,et al.  An active strain electromechanical model for cardiac tissue , 2012, International journal for numerical methods in biomedical engineering.

[14]  T. Hisada,et al.  Approximation for Cooperative Interactions of a Spatially-Detailed Cardiac Sarcomere Model , 2011, Cellular and molecular bioengineering.

[15]  J Stålhand,et al.  A mechanochemical 3D continuum model for smooth muscle contraction under finite strains. , 2011, Journal of theoretical biology.

[16]  S. Göktepe,et al.  Computational modeling of passive myocardium , 2011 .

[17]  David J. Gavaghan,et al.  CARDIAC ELECTROMECHANICS: THE EFFECT OF CONTRACTION MODEL ON THE MATHEMATICAL PROBLEM AND ACCURACY OF THE NUMERICAL SCHEME , 2010 .

[18]  M. Gurtin,et al.  The Mechanics and Thermodynamics of Continua , 2010 .

[19]  Martin Kroon,et al.  A calcium-driven mechanochemical model for prediction of force generation in smooth muscle , 2010, Biomechanics and modeling in mechanobiology.

[20]  Gerhard A Holzapfel,et al.  Constitutive modelling of passive myocardium: a structurally based framework for material characterization , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[21]  Christian Bourdarias,et al.  A pseudo active kinematic constraint for a biological living soft tissue: An effect of the collagen network , 2008, Math. Comput. Model..

[22]  J. Ohayon,et al.  Theoretical analysis of the adaptive contractile behaviour of a single cardiomyocyte cultured on elastic substrates with varying stiffness. , 2008, Journal of theoretical biology.

[23]  J. Rice,et al.  Approximate model of cooperative activation and crossbridge cycling in cardiac muscle using ordinary differential equations. , 2008, Biophysical journal.

[24]  F. Fenton,et al.  Minimal model for human ventricular action potentials in tissue. , 2008, Journal of theoretical biology.

[25]  Jorge A Negroni,et al.  Simulation of steady state and transient cardiac muscle response experiments with a Huxley-based contraction model. , 2008, Journal of molecular and cellular cardiology.

[26]  B. Taccardi,et al.  Modeling ventricular repolarization: effects of transmural and apex-to-base heterogeneities in action potential durations. , 2008, Mathematical Biosciences.

[27]  P. Nardinocchi,et al.  An electromechanical model of cardiac tissue: constitutive issues and electrophysiological effects. , 2008, Progress in biophysics and molecular biology.

[28]  P. Nardinocchi,et al.  On the Active Response of Soft Living Tissues , 2007 .

[29]  Paul Steinmann,et al.  On configurational forces in multiplicative elastoplasticity , 2007 .

[30]  R. Sivan,et al.  Stability, Controllability, and Observability of the “Four State” Model for the Sarcomeric Control of Contraction , 2006, Annals of Biomedical Engineering.

[31]  M. Nash,et al.  Electromechanical model of excitable tissue to study reentrant cardiac arrhythmias. , 2004, Progress in biophysics and molecular biology.

[32]  J. Bogaert,et al.  Regional nonuniformity of normal adult human left ventricle. , 2001, American journal of physiology. Heart and circulatory physiology.

[33]  Renato Perucchio,et al.  Modeling Heart Development , 2000 .

[34]  F. Rademakers,et al.  Noninvasive measurement of shortening in the fiber and cross-fiber directions in the normal human left ventricle and in idiopathic dilated cardiomyopathy. , 1997, Circulation.

[35]  J W Covell,et al.  Transverse shear along myocardial cleavage planes provides a mechanism for normal systolic wall thickening. , 1995, Circulation research.

[36]  G M Hutchins,et al.  Relation of regional cross-fiber shortening to wall thickening in the intact heart. Three-dimensional strain analysis by NMR tagging. , 1994, Circulation.

[37]  N. Brachfeld,et al.  Thermodynamics of the myocardial cell. A redefinition of its active and resting states. , 1977, Chest.

[38]  M. Gurtin,et al.  Thermodynamics with Internal State Variables , 1967 .

[39]  Walter Noll,et al.  The thermodynamics of elastic materials with heat conduction and viscosity , 1963 .

[40]  Frederick Albert Matsen IV,et al.  The Near Ultraviolet Absorption Spectrum of Aniline Vapor , 1945 .

[41]  Alfio Quarteroni,et al.  Activation Models for the Numerical Simulation of Cardiac Electromechanical Interactions , 2013 .

[42]  Serdar Göktepe,et al.  A fully implicit finite element method for bidomain models of cardiac electromechanics. , 2013, Computer methods in applied mechanics and engineering.

[43]  Andreas Menzel,et al.  Micro-structurally based kinematic approaches to electromechanics of the heart , 2013 .

[44]  A. Klarbring,et al.  Modeling of Smooth Muscle Activation , 2013 .

[45]  Ellen Kuhl,et al.  IN VITRO/IN SILICO CHARACTERIZATION OF ACTIVE AND PASSIVE STRESSES IN CARDIAC MUSCLE , 2012 .

[46]  D. MacIver The relative impact of circumferential and longitudinal shortening on left ventricular ejection fraction and stroke volume. , 2012, Experimental and clinical cardiology.

[47]  S. Göktepe,et al.  Electromechanics of the heart: a unified approach to the strongly coupled excitation–contraction problem , 2010 .

[48]  Olivier Rousseau,et al.  Geometrical modeling of the heart , 2010 .

[49]  J Stålhand,et al.  Smooth muscle contraction: mechanochemical formulation for homogeneous finite strains. , 2008, Progress in biophysics and molecular biology.

[50]  Mary E. Klingensmith,et al.  The Washington Manual of Surgery , 2008 .

[51]  Jacques Ohayon,et al.  An Integrative Model of the Self-Sustained Oscillating Contractions of Cardiac Myocytes , 2005, Acta biotheoretica.

[52]  J. Bundy,et al.  Delineation of normal human left ventricular twist throughout systole by tagged cine magnetic resonance imaging. , 2000, Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance.

[53]  R. Ogden Non-Linear Elastic Deformations , 1984 .

[54]  Sergei Petrovich Novikov,et al.  The geometry of surfaces, transformation groups, and fields , 1984 .

[55]  E. H. Lee,et al.  Finite‐Strain Elastic—Plastic Theory with Application to Plane‐Wave Analysis , 1967 .