The critical role of disks in the formation of high-mass stars

Although massive stars (commonly defined as those in excess of about eight solar masses, or with initial luminosities of a thousand times the solar luminosity or more) have an enormous impact on the galactic environment, how they form has been a mystery. The solution probably involves the existence of accretion disks. Rotational motions have been found in the gas surrounding young high-mass stars, which suggests that non-spherical accretion could be the fundamental ingredient of the massive-star formation recipe.

[1]  A. Boss,et al.  Protostars and Planets VI , 2000 .

[2]  Very compact radio emission from high-mass protostars - II. Dust disks and ionized accretion flows , 2005, astro-ph/0504026.

[3]  M. Claussen,et al.  Evidence for a Solar System-Size Accretion Disk Around the Massive Protostar G192.16-3.82 , 2001, Science.

[4]  M. G. Hoare,et al.  Star formation at high angular resolution , 2004, astro-ph/0411500.

[5]  P. Caselli,et al.  Cores to Clusters , 2005 .

[6]  Qizhou Zhang,et al.  A disk of dust and molecular gas around a high-mass protostar , 2005, Nature.

[7]  Peter S. Shenkln Nurture not nature , 1994, Nature.

[8]  T. Henning,et al.  Infrared Images and Millimeter Data from Cold Southern IRAS Sources , 1997 .

[9]  H. B. Shepherd Precursors of UchII Regions and the Evolution of Massive Outflows , 2005, astro-ph/0502214.

[10]  H. Kataza,et al.  No high-mass protostars in the silhouette young stellar object M17-SO1 , 2005, Nature.

[11]  Todd R. Hunter,et al.  Search for CO Outflows toward a Sample of 69 High-Mass Protostellar Candidates: Frequency of Occurrence , 2001 .

[12]  F. Shu,et al.  Collapse of Magnetized Molecular Cloud Cores. II. Numerical Results , 1993 .

[13]  R. Cesaroni Massive star birth : a crossroads of astrophysics : proceedings of the 227th symposium of the International Astronomical Union, held in Acireale, Italy, May 16-20, 2005 , 2005 .

[14]  I. Bonnell,et al.  Massive star formation: nurture, not nature , 2004, astro-ph/0401059.

[15]  H. Yorke,et al.  On the Formation of Massive Stars , 2002, astro-ph/0201041.

[16]  The Thermal Regulation of Gravitational Instabilities in Protoplanetary Disks , 2003 .

[17]  H. Yorke,et al.  PHOTOEVAPORATION OF PROTOSTELLAR DISKS. II. THE IMPORTANCE OF UV DUST PROPERTIES AND IONIZING FLUX , 1997 .

[18]  C. McKee,et al.  Massive star formation in 100,000 years from turbulent and pressurized molecular clouds , 2002, Nature.

[19]  R. Neri,et al.  A study of the Keplerian accretion disk and precessing outflow in the massive protostar IRAS 20126+4104 , 2005 .

[20]  Christopher F. McKee,et al.  How Protostellar Outflows Help Massive Stars Form , 2005 .

[21]  R. J. Cohen,et al.  Magnetic field structure in the bipolar outflow source G 35.2–0.74N: MERLIN spectral line results , 1999 .

[22]  T. Nakano Conditions for the Formation of Massive Stars through Nonspherical Accretion , 1989 .

[23]  F. Adams,et al.  Infall collapse solutions in the inner limit: Radiation pressure and its effects on star formation , 1995, astro-ph/9511095.

[24]  F. Adams,et al.  Star Formation in Molecular Clouds: Observation and Theory , 1987 .

[25]  W. D. Brighton Frequency of occurrence of IgG (S‐TS) , 1980, Clinical allergy.

[26]  Dynamical Masses of T Tauri Stars and Calibration of Pre-Main-Sequence Evolution , 2000, astro-ph/0008370.

[27]  Markus Nielbock,et al.  The formation of a massive protostar through the disk accretion of gas , 2004, Nature.

[28]  Richard H. Durisen,et al.  The Thermal Regulation of Gravitational Instabilities in Protoplanetary Disks. II. Extended Simulations with Varied Cooling Rates , 2005 .

[29]  E. Churchwell,et al.  High-Velocity Molecular Gas from High-Mass Star Formation Regions , 1996 .

[30]  F. Palla,et al.  The pre-main-sequence evolution of intermediate-mass stars , 1993 .

[31]  G. Fuller,et al.  The Direct Detection of a (Proto)Binary/Disk System in IRAS 20126+4104 , 2005, astro-ph/0508342.

[32]  K. Menten,et al.  Massive molecular outflows , 2001, astro-ph/0110372.

[33]  T. Henning,et al.  The young intermediate-mass stellar object AFGL 490 – A disk surrounded by a cold envelope , 2002 .

[34]  K. Keil,et al.  Protostars and Planets V , 2007 .

[35]  P. J. Armitage,et al.  Investigating fragmentation conditions in self-gravitating accretion discs , 2005 .

[36]  Cambridge,et al.  Testing the locality of transport in self-gravitating accretion discs , 2004 .

[37]  Matthew R. Bate,et al.  Smoothed particle hydrodynamics with radiative transfer in the flux-limited diffusion approximation , 2004 .

[38]  Miki Ishii,et al.  A circumstellar disk associated with a massive protostellar object , 2005, Nature.

[39]  A. Toomre,et al.  On the gravitational stability of a disk of stars , 1964 .

[40]  Cambridge,et al.  Testing the locality of transport in self-gravitating accretion discs — II. The massive disc case , 2005 .

[41]  R. Klein,et al.  The formation of stars by gravitational collapse rather than competitive accretion , 2005, Nature.

[42]  Qizhou Zhang,et al.  A Disk/Jet System toward the High-Mass Young Star in AFGL 5142 , 2001 .

[43]  Matthew R. Bate,et al.  Binary systems and stellar mergers in massive star formation , 2005 .

[44]  J. Bernard,et al.  OUTFLOW AND DISK AROUND THE VERY YOUNG MASSIVE STAR GH2O 092.67+03.07 , 1999 .

[45]  R. Siebenmorgen,et al.  A Remnant Disk around a Young Massive Star , 2006 .