Unit homogenization for estimation of inertial parameters of multibody mechanical systems

Abstract Parameter estimation is of great importance in the analysis and design of multibody systems. As the result of research in this framework, several contributions exist in parameter estimation of mechanical systems in general and robotic systems in particular. In this context, numerical approaches can be used to identify the inertial parameters based on measurement data collected from experiments. However, there are some important issues which are crucial from the physical point of view and have not been considered in the development of numerical approaches for parameter estimation. In this paper, we address the problem of a regression matrix with nonhomogeneous physical units. A regression matrix, which contains the most important information about the motion of the system, with nonhomogeneous units cannot and should not be used in numerical methods due to the unit-inconsistency in matrix multiplication required in all numerical approaches. Attention must be paid to this before implementing any parameter estimation algorithm. This paper proposes a procedure to treat this problem in a proper way.

[1]  Pradeep K. Khosla Categorization of parameters in the dynamic robot model , 1989, IEEE Trans. Robotics Autom..

[2]  Koji Yoshida,et al.  Base parameters of dynamic models for manipulators with rotational and translational joints , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[3]  Willi Kortüm,et al.  Parameter Identification of Nonlinear Descriptor Systems , 1993 .

[4]  Brian Armstrong,et al.  On Finding Exciting Trajectories for Identification Experiments Involving Systems with Nonlinear Dynamics , 1989, Int. J. Robotics Res..

[5]  Christopher G. Atkeson,et al.  Estimation of Inertial Parameters of Manipulator Loads and Links , 1986 .

[6]  P. Fisette,et al.  Recursive Formalism with a Minimal Dynamic Parameterization for the Identification and Simulation of Multibody Systems. Application to the Human Body , 2002 .

[7]  Jan Swevers,et al.  Experimental identification of robot dynamics for control , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[8]  Jan Swevers,et al.  Experimental Robot Identification: Advantages of Combining Internal and External Measurements and of Using Periodic Excitation , 2001 .

[9]  David G. Beale,et al.  A General Method for Estimating Dynamic Parameters of Spatial Mechanisms , 1998 .

[10]  Jan Swevers,et al.  Combining internal and external robot models to improve model parameter estimation , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[11]  M. W. Walker,et al.  Estimating the essential parameter space of the robot manipulator dynamics , 1989, Proceedings of the 28th IEEE Conference on Decision and Control,.

[12]  M. Gautier,et al.  Exciting Trajectories for the Identification of Base Inertial Parameters of Robots , 1992 .

[13]  Werner Schiehlen Advanced Multibody System Dynamics: Simulation and Software Tools , 2010 .

[14]  Henrik Gordon Petersen,et al.  A new method for estimating parameters of a dynamic robot model , 2001, IEEE Trans. Robotics Autom..

[15]  Michael W. Walker,et al.  Identifying the Independent Inertial Parameter Space of Robot Manipulators , 1991, Int. J. Robotics Res..

[16]  Giuseppe Carlo Calafiore,et al.  Robot Dynamic Calibration: Optimal Excitation Trajectories and Experimental Parameter Estimation , 2001 .

[17]  E. Haug,et al.  Generalized Coordinate Partitioning for Dimension Reduction in Analysis of Constrained Dynamic Systems , 1982 .

[18]  D. Beale,et al.  A Linear Approach for Experimental Dynamic Parameter Estimation of Planar Mechanisms , 2003 .

[19]  Koichi Osuka,et al.  Base parameters of manipulator dynamic models , 1990, IEEE Trans. Robotics Autom..

[20]  Wisama Khalil,et al.  On the identification of the inertial parameters of robots , 1988, Proceedings of the 27th IEEE Conference on Decision and Control.

[21]  Wisama Khalil,et al.  A direct determination of minimum inertial parameters of robots , 1988, Proceedings. 1988 IEEE International Conference on Robotics and Automation.

[22]  R. Serban,et al.  Identification and Identifiability of Unknown Parameters in Multibody Dynamic Systems , 2001 .

[23]  Vicente Mata,et al.  Dynamic parameter identification in industrial robots considering physical feasibility , 2005, Adv. Robotics.

[24]  Ronald G.K.M. Aarts,et al.  A finite element formulation for dynamic parameter identification of robot manipulators , 2006 .

[25]  Jean-Claude Samin,et al.  Minimal dynamic characterization of tree-like multibody systems , 1996 .

[26]  Jan Swevers,et al.  Experimental robot identification using optimized periodic trajectories , 1994 .

[27]  David G. Beale,et al.  A new method to determine the base inertial parameters of planar mechanisms , 2002 .

[28]  M. Gautier Numerical calculation of the base inertial parameters of robots , 1991, J. Field Robotics.

[29]  Krzysztof Kozłowski,et al.  Modelling and Identification in Robotics , 1998 .

[30]  Jan Swevers,et al.  Optimal robot excitation and identification , 1997, IEEE Trans. Robotics Autom..

[31]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .