Evidence That Rapid Vesicle Replenishment of the Synaptic Ribbon Mediates Recovery from Short-Term Adaptation at the Hair Cell Afferent Synapse

[1]  T. Parsons,et al.  Large releasable pool of synaptic vesicles in chick cochlear hair cells. , 2004, Journal of neurophysiology.

[2]  Manfred Lindau,et al.  Patch-clamp techniques for time-resolved capacitance measurements in single cells , 1988, Pflügers Archiv.

[3]  B. Sakmann,et al.  Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches , 1981, Pflügers Archiv.

[4]  Court Hull,et al.  Synaptic Cleft Acidification and Modulation of Short-Term Depression by Exocytosed Protons in Retinal Bipolar Cells , 2003, The Journal of Neuroscience.

[5]  A. Ricci,et al.  Biophysical and Pharmacological Characterization of Voltage‐Gated Calcium Currents in Turtle Auditory Hair Cells , 2003, The Journal of physiology.

[6]  Kerry J. Kim,et al.  Slow Na+ Inactivation and Variance Adaptation in Salamander Retinal Ganglion Cells , 2003, The Journal of Neuroscience.

[7]  P. Sterling,et al.  Synaptic Ribbon Conveyor Belt or Safety Belt? , 2003, Neuron.

[8]  Mark Ellisman,et al.  Depolarization Redistributes Synaptic Membrane and Creates a Gradient of Vesicles on the Synaptic Body at a Ribbon Synapse , 2002, Neuron.

[9]  Peter Sterling,et al.  Roles of ATP in depletion and replenishment of the releasable pool of synaptic vesicles. , 2002, Journal of neurophysiology.

[10]  S. Nelson,et al.  Short-Term Depression at Thalamocortical Synapses Contributes to Rapid Adaptation of Cortical Sensory Responses In Vivo , 2002, Neuron.

[11]  A. Rodríguez-Contreras,et al.  Ca2+ transport properties and determinants of anomalous mole fraction effects of single voltage‐gated Ca2+ channels in hair cells from bullfrog saccule , 2002, The Journal of physiology.

[12]  L. Lagnado,et al.  Endogenous Calcium Buffers Regulate Fast Exocytosis in the Synaptic Terminal of Retinal Bipolar Cells , 2002, Neuron.

[13]  T. Parsons,et al.  Chick cochlear hair cell exocytosis mediated by dihydropyridine‐sensitive calcium channels , 2001, The Journal of physiology.

[14]  H. von Gersdorff,et al.  Structure suggests function: the case for synaptic ribbons as exocytotic nanomachines , 2001, BioEssays : news and reviews in molecular, cellular and developmental biology.

[15]  T. Schikorski,et al.  Morphological correlates of functionally defined synaptic vesicle populations , 2001, Nature Neuroscience.

[16]  H. V. Gersdorff,et al.  Synaptic Ribbons:Versatile Signal Transducers , 2001, Neuron.

[17]  G. Fain,et al.  Adaptation in vertebrate photoreceptors. , 2001, Physiological reviews.

[18]  Ralf Schneggenburger,et al.  Intracellular calcium dependence of transmitter release rates at a fast central synapse , 2000, Nature.

[19]  B Sakmann,et al.  Calcium sensitivity of glutamate release in a calyx-type terminal. , 2000, Science.

[20]  William Bialek,et al.  Adaptive Rescaling Maximizes Information Transmission , 2000, Neuron.

[21]  T. Moser,et al.  Kinetics of exocytosis and endocytosis at the cochlear inner hair cell afferent synapse of the mouse. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[22]  M. Eisen Neurotransmitter release at the chick cochlear hair cell afferent synapse , 2000 .

[23]  K. Gillis,et al.  Admittance-based measurement of membrane capacitance using the EPC-9 patch-clamp amplifier , 2000, Pflügers Archiv.

[24]  J. Borst,et al.  The Reduced Release Probability of Releasable Vesicles during Recovery from Short-Term Synaptic Depression , 1999, Neuron.

[25]  L. Lagnado,et al.  Two Actions of Calcium Regulate the Supply of Releasable Vesicles at the Ribbon Synapse of Retinal Bipolar Cells , 1999, The Journal of Neuroscience.

[26]  L. Lagnado,et al.  The kinetics of exocytosis and endocytosis in the synaptic terminal of goldfish retinal bipolar cells , 1999, The Journal of physiology.

[27]  M H Ellisman,et al.  Synaptic Vesicle Populations in Saccular Hair Cells Reconstructed by Electron Tomography , 1999, The Journal of Neuroscience.

[28]  M. Tachibana,et al.  Submillisecond Kinetics of Glutamate Release from a Sensory Synapse , 1998, Neuron.

[29]  Margaret Barnes-Davies,et al.  Inactivation of Presynaptic Calcium Current Contributes to Synaptic Depression at a Fast Central Synapse , 1998, Neuron.

[30]  E. Neher Vesicle Pools and Ca2+ Microdomains: New Tools for Understanding Their Roles in Neurotransmitter Release , 1998, Neuron.

[31]  P. Fuchs,et al.  Release Sites and Calcium Channels in Hair Cells of the Chick’s Cochlea , 1997, The Journal of Neuroscience.

[32]  M. Carandini,et al.  A tonic hyperpolarization underlying contrast adaptation in cat visual cortex. , 1997, Science.

[33]  P. Saggau,et al.  Presynaptic inhibition of elicited neurotransmitter release , 1997, Trends in Neurosciences.

[34]  G. Matthews,et al.  Depletion and Replenishment of Vesicle Pools at a Ribbon-Type Synaptic Terminal , 1997, The Journal of Neuroscience.

[35]  G. Matthews,et al.  Ultrafast Exocytosis Elicited by Calcium Current in Synaptic Terminals of Retinal Bipolar Neurons , 1996, Neuron.

[36]  J. Saunders,et al.  Cochlear nerve activity after intense sound exposure in neonatal chicks. , 1996, Journal of neurophysiology.

[37]  J Atema,et al.  Temporal resolution in olfaction II: time course of recovery from adaptation in lobster chemoreceptor cells. , 1996, Journal of neurophysiology.

[38]  W. Betz,et al.  Simultaneous independent measurement of endocytosis and exocytosis , 1996, Nature.

[39]  E. Javel,et al.  Long-term adaptation in cat auditory-nerve fiber responses. , 1996, The Journal of the Acoustical Society of America.

[40]  Y. Koutalos,et al.  Regulation of sensitivity in vertebrate rod photoreceptors by calcium , 1996, Trends in Neurosciences.

[41]  G. Matthews,et al.  Calcium-dependent inactivation of calcium current in synaptic terminals of retinal bipolar neurons , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[42]  M. Lindau,et al.  Influence of conductance changes on patch clamp capacitance measurements using a lock-in amplifier and limitations of the phase tracking technique. , 1995, Biophysical Journal.

[43]  B. Walmsley,et al.  Counting quanta: Direct measurements of transmitter release at a central synapse , 1995, Neuron.

[44]  P. Fuchs,et al.  Kinetic analysis of barium currents in chick cochlear hair cells. , 1995, Biophysical journal.

[45]  H. Horstmann,et al.  The last seconds in the life of a secretory vesicle. , 1995, Cold Spring Harbor symposia on quantitative biology.

[46]  Y. Goda,et al.  Two components of transmitter release at a central synapse. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[47]  R. Salvi,et al.  Cochlear frequency-place map in adult chickens: Intracellular biocytin labeling , 1994, Hearing Research.

[48]  Richard J. Bookman,et al.  Releasable pools and the kinetics of exocytosis in adrenal chromaffin cells , 1994, Neuron.

[49]  W. Almers,et al.  Calcium-triggered exocytosis and endocytosis in an isolated presynaptic cell: Capacitance measurements in saccular hair cells , 1994, Neuron.

[50]  W A Roberts Localization of calcium signals by a mobile calcium buffer in frog saccular hair cells , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[51]  H. V. Gersdorff,et al.  Dynamics of synaptic vesicle fusion and membrane retrieval in synaptic terminals , 1994, Nature.

[52]  W. Almers How fast can you get? , 1994, Nature.

[53]  W. Almers Synapses. How fast can you get? , 1994, Nature.

[54]  W. Almers,et al.  A low affinity Ca2+ receptor controls the final steps in peptide secretion from pituitary melanotrophs , 1993, Neuron.

[55]  William M. Roberts,et al.  Spatial calcium buffering in saccular hair cells , 1993, Nature.

[56]  R. Zucker,et al.  Multiple calcium-dependent processes related to secretion in bovine chromaffin cells , 1993, Neuron.

[57]  C E Schreiner,et al.  Adaptation and recovery from adaptation in single fiber responses of the cat auditory nerve. , 1991, The Journal of the Acoustical Society of America.

[58]  M. G. Evans,et al.  Potassium currents in hair cells isolated from the cochlea of the chick. , 1990, The Journal of physiology.

[59]  M. G. Evans,et al.  Calcium currents in hair cells isolated from the cochlea of the chick. , 1990, The Journal of physiology.

[60]  M G Evans,et al.  Electrical tuning in hair cells isolated from the chick cochlea , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[61]  A J Hudspeth,et al.  Kinetic analysis of voltage‐ and ion‐dependent conductances in saccular hair cells of the bull‐frog, Rana catesbeiana. , 1988, The Journal of physiology.

[62]  J. Siegel,et al.  Antagonistic effects of perilymphatic calcium and magnesium on the activity of single cochlear afferent neurons , 1987, Hearing Research.

[63]  J. E. Rose,et al.  Distribution of synaptic ribbons in the developing organ of Corti , 1986, Journal of neurocytology.

[64]  E. Neher,et al.  Concentration profiles of intracellular calcium in the presence of a diffusible chelator. , 1986 .

[65]  Donald Robertson,et al.  Very rapid adaptation in the guinea pig auditory nerve , 1985, Hearing Research.

[66]  L. A. Westerman,et al.  Rapid and short-term adaptation in auditory nerve responses , 1984, Hearing Research.

[67]  H. Ohmori Studies of ionic currents in the isolated vestibular hair cell of the chick. , 1984, The Journal of physiology.

[68]  T Holton,et al.  Receptor potentials of lizard cochlear hair cells with free‐standing stereocilia in response to tones. , 1983, The Journal of physiology.

[69]  M. Kuno,et al.  Quantal analysis of a decremental response at hair cell‐afferent fibre synapses in the goldfish sacculus. , 1982, The Journal of physiology.

[70]  E. Rubel,et al.  Electrophysiological study of the maturation of auditory responses from the inner ear of the chick , 1981, Brain Research.

[71]  P. Dallos,et al.  Forward masking of auditory nerve fiber responses. , 1979, Journal of neurophysiology.

[72]  P M Sellick,et al.  Intracellular studies of hair cells in the mammalian cochlea. , 1978, The Journal of physiology.

[73]  R L Smith,et al.  Short-term adaptation in single auditory nerve fibers: some poststimulatory effects. , 1976, Journal of neurophysiology.

[74]  G. Manley,et al.  Analysis of spontaneous activity of auditory neurones in the spiral ganglion of the guinea‐pig cochlea. , 1976, The Journal of physiology.

[75]  G. Gates,et al.  The development of auditory evoked responses in the cochlea and cochlear nuclei of the chick. , 1973, Brain research.

[76]  C. Stevens,et al.  The kinetics of transmitter release at the frog neuromuscular junction , 1972, The Journal of physiology.

[77]  Alexander Joseph Book reviewDischarge patterns of single fibers in the cat's auditory nerve: Nelson Yuan-Sheng Kiang, with the assistance of Takeshi Watanabe, Eleanor C. Thomas and Louise F. Clark: Research Monograph no. 35. Cambridge, Mass., The M.I.T. Press, 1965 , 1967 .

[78]  I. Whitfield Discharge Patterns of Single Fibers in the Cat's Auditory Nerve , 1966 .

[79]  B Katz,et al.  The effect of temperature on the synaptic delay at the neuromuscular junction. , 1965, The Journal of physiology.

[80]  F. Attneave Some informational aspects of visual perception. , 1954, Psychological review.