Flexible Protein-Protein Docking with SwarmDock.

The atomic structures of protein complexes can provide useful information for drug design, protein engineering, systems biology, and understanding pathology. Obtaining this information experimentally can be challenging. However, if the structures of the subunits are known, then it is often possible to model the complex computationally. This chapter provide practical guidelines for docking proteins using the SwarmDock flexible protein-protein docking method, providing an overview of the factors that need to be considered when deciding whether docking is likely to be successful, the preparation of structural input, generation of docked poses, analysis and ranking of docked poses, and the validation of models using external data.

[1]  H. Wolfson,et al.  Determining macromolecular assembly structures by molecular docking and fitting into an electron density map , 2010, Proteins.

[2]  Arlo Z. Randall,et al.  Development of a Novel Cross-linking Strategy for Fast and Accurate Identification of Cross-linked Peptides of Protein Complexes* , 2010, Molecular & Cellular Proteomics.

[3]  Juan Fernández-Recio,et al.  CCharPPI web server: computational characterization of protein-protein interactions from structure , 2015, Bioinform..

[4]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[5]  Daisuke Kihara,et al.  Pairwise and multimeric protein-protein docking using the LZerD program suite. , 2014, Methods in molecular biology.

[6]  Ron Elber,et al.  DOCK/PIERR: web server for structure prediction of protein-protein complexes. , 2014, Methods in molecular biology.

[7]  Ben M. Webb,et al.  Putting the Pieces Together: Integrative Modeling Platform Software for Structure Determination of Macromolecular Assemblies , 2012, PLoS biology.

[8]  Mieczyslaw Torchala,et al.  The scoring of poses in protein-protein docking: current capabilities and future directions , 2013, BMC Bioinformatics.

[9]  Zhiping Weng,et al.  IRaPPA: information retrieval based integration of biophysical models for protein assembly selection , 2017, Bioinform..

[10]  Mieczyslaw Torchala,et al.  A Markov‐chain model description of binding funnels to enhance the ranking of docked solutions , 2013, Proteins.

[11]  Karsten Suhre,et al.  ElNémo: a normal mode web server for protein movement analysis and the generation of templates for molecular replacement , 2004, Nucleic Acids Res..

[12]  Mieczyslaw Torchala,et al.  Predicting the structure of protein-protein complexes using the SwarmDock Web Server. , 2014, Methods in molecular biology.

[13]  Roger J.-B. Wets,et al.  Minimization by Random Search Techniques , 1981, Math. Oper. Res..

[14]  Chaok Seok,et al.  Template-Based Prediction of Protein-Peptide Interactions by Using GalaxyPepDock. , 2017, Methods in molecular biology.

[15]  Dima Kozakov,et al.  Sampling and scoring: A marriage made in heaven , 2013, Proteins.

[16]  Paul A Bates,et al.  A machine learning approach for ranking clusters of docked protein‐protein complexes by pairwise cluster comparison , 2017, Proteins.

[17]  Zhiping Weng,et al.  Accelerating Protein Docking in ZDOCK Using an Advanced 3D Convolution Library , 2011, PloS one.

[18]  Sergey Lyskov,et al.  The RosettaDock server for local protein–protein docking , 2008, Nucleic Acids Res..

[19]  Alexandre M J J Bonvin,et al.  Modeling protein-protein complexes using the HADDOCK webserver "modeling protein complexes with HADDOCK". , 2014, Methods in molecular biology.

[20]  Hongyi Zhou,et al.  A physical reference state unifies the structure‐derived potential of mean force for protein folding and binding , 2004, Proteins.

[21]  Dima Kozakov,et al.  The ClusPro web server for protein–protein docking , 2017, Nature Protocols.

[22]  Mieczyslaw Torchala,et al.  SwarmDock: a server for flexible protein-protein docking , 2013, Bioinform..

[23]  Alexandre M J J Bonvin,et al.  A multidomain flexible docking approach to deal with large conformational changes in the modeling of biomolecular complexes. , 2011, Structure.

[24]  O. Dym,et al.  The modular architecture of protein-protein binding interfaces. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[25]  Juan Fernández-Recio,et al.  A systematic analysis of scoring functions in rigid‐body protein docking: The delicate balance between the predictive rate improvement and the risk of overtraining , 2017, Proteins.

[26]  D. Svergun,et al.  CRYSOL : a program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates , 1995 .

[27]  Lazaros Mavridis,et al.  HexServer: an FFT-based protein docking server powered by graphics processors , 2010, Nucleic Acids Res..

[28]  Ruth Nussinov,et al.  An integrated suite of fast docking algorithms , 2010, Proteins.

[29]  Juan Fernández-Recio,et al.  SKEMPI: a Structural Kinetic and Energetic database of Mutant Protein Interactions and its use in empirical models , 2012, Bioinform..

[30]  Guilhem Faure,et al.  Versatility and Invariance in the Evolution of Homologous Heteromeric Interfaces , 2012, PLoS Comput. Biol..

[31]  Dror Tobi,et al.  Designing coarse grained-and atom based-potentials for protein-protein docking , 2010, BMC Structural Biology.

[32]  A. Shvartsburg,et al.  An exact hard-spheres scattering model for the mobilities of polyatomic ions , 1996 .

[33]  P. Bates,et al.  SwarmDock and the Use of Normal Modes in Protein-Protein Docking , 2010, International journal of molecular sciences.

[34]  Carles Pons,et al.  pyDockWEB: a web server for rigid-body protein-protein docking using electrostatics and desolvation scoring , 2013, Bioinform..

[35]  Ruben Abagyan,et al.  FRODOCK: a new approach for fast rotational protein-protein docking , 2009, Bioinform..

[36]  Olli T Pentikäinen,et al.  A Novel Structural Unit in the N-terminal Region of Filamins* , 2014, The Journal of Biological Chemistry.

[37]  Andries Petrus Engelbrecht,et al.  Fundamentals of Computational Swarm Intelligence , 2005 .

[38]  Andrey Tovchigrechko,et al.  GRAMM-X public web server for protein–protein docking , 2006, Nucleic Acids Res..

[39]  Adrian A Canutescu,et al.  SCWRL and MolIDE: computer programs for side-chain conformation prediction and homology modeling , 2008, Nature Protocols.

[40]  Isaure Chauvot de Beauchêne,et al.  A web interface for easy flexible protein-protein docking with ATTRACT. , 2015, Biophysical journal.

[41]  Barry Honig,et al.  Loop modeling: Sampling, filtering, and scoring , 2007, Proteins.

[42]  Yang Shen,et al.  Predicting protein conformational changes for unbound and homology docking: learning from intrinsic and induced flexibility , 2017, Proteins.

[43]  Iain H Moal,et al.  Modeling Protein Conformational Transition Pathways Using Collective Motions and the LASSO Method. , 2017, Journal of chemical theory and computation.

[44]  Geoffrey J. Barton,et al.  PIPs: human protein–protein interaction prediction database , 2008, Nucleic Acids Res..

[45]  Xiaoqin Zou,et al.  MDockPP: A hierarchical approach for protein‐protein docking and its application to CAPRI rounds 15–19 , 2010, Proteins.

[46]  D I Svergun,et al.  Protein hydration in solution: experimental observation by x-ray and neutron scattering. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[47]  S. Fields,et al.  Deep mutational scanning: a new style of protein science , 2014, Nature Methods.

[48]  Xiaofan Li,et al.  Detection and refinement of encounter complexes for protein–protein docking: Taking account of macromolecular crowding , 2010, Proteins.

[49]  G C P van Zundert,et al.  The HADDOCK2.2 Web Server: User-Friendly Integrative Modeling of Biomolecular Complexes. , 2016, Journal of molecular biology.

[50]  Sarah A. Teichmann,et al.  Relative Solvent Accessible Surface Area Predicts Protein Conformational Changes upon Binding , 2011, Structure.

[51]  M. Sternberg,et al.  Insights into protein flexibility: The relationship between normal modes and conformational change upon protein–protein docking , 2008, Proceedings of the National Academy of Sciences.

[52]  Albert J R Heck,et al.  Proteome-wide profiling of protein assemblies by cross-linking mass spectrometry , 2015, Nature Methods.

[53]  Jianpeng Ma,et al.  CHARMM: The biomolecular simulation program , 2009, J. Comput. Chem..