Extending Cycles Locally to Hamilton Cycles

A Hamilton circle in an infinite graph is a homeomorphic copy of the  unit circle $S^1$ that contains all vertices and all ends precisely once. We prove that every connected, locally connected, locally finite, claw-free graph has such a Hamilton circle, extending a result of Oberly and Sumner to infinite graphs. Furthermore, we show that such graphs are Hamilton-connected if and only if they are $3$-connected, extending a result of Asratian. Hamilton-connected means that between any two vertices there is a Hamilton arc, a homeomorphic copy of the unit interval $[0,1]$ that contains all vertices and all ends precisely once.

[1]  Frank Harary,et al.  Graph Theory , 2016 .

[2]  Liming Xiong The Hamiltonian Index of a Graph , 2001, Graphs Comb..

[3]  Karl Heuer A sufficient condition for Hamiltonicity in locally finite graphs , 2015, Eur. J. Comb..

[4]  Reinhard Diestel,et al.  On Infinite Cycles II , 2004, Comb..

[5]  Florian Lehner,et al.  On spanning tree packings of highly edge connected graphs , 2011, J. Comb. Theory, Ser. B.

[6]  Maya Jakobine Stein,et al.  On end degrees and infinite cycles in locally finite graphs , 2007, Comb..

[7]  H. Freudenthal,et al.  Über die Enden topologischer Räume und Gruppen , 1931 .

[8]  Karl Heuer,et al.  A sufficient local degree condition for Hamiltonicity in locally finite claw-free graphs , 2016, Eur. J. Comb..

[9]  H. Bruhn Infinite circuits in locally finite graphs , 2005 .

[10]  Armen S. Asratian Every 3-connected, locally connected, claw-free graph is Hamilton-connected , 1996, J. Graph Theory.

[11]  Maya Jakobine Stein,et al.  Extremal infinite graph theory , 2011, Discret. Math..

[12]  Henning Bruhn,et al.  Hamilton Cycles in Planar Locally Finite Graphs , 2008, SIAM J. Discret. Math..

[13]  Marko Lovrečič Saražin On the hamiltonian index of a graph , 1993, Discret. Math..

[14]  Reinhard Diestel,et al.  Locally finite graphs with ends: A topological approach, I. Basic theory , 2009, Discret. Math..

[15]  David P. Sumner,et al.  Every connected, locally connected nontrivial graph with no induced claw is hamiltonian , 1979, J. Graph Theory.

[16]  Agelos Georgakopoulos,et al.  Infinite Hamilton cycles in squares of locally finite graphs , 2009 .

[17]  R. Halin,et al.  A note on Menger's theorem for infinite locally finite graphs , 1974 .

[18]  Reinhard Diestel,et al.  Locally finite graphs with ends: A topological approach, II. Applications , 2010, Discret. Math..

[19]  Henning Bruhn,et al.  Eulerian edge sets in locally finite graphs , 2011, Comb..

[20]  Reinhard Diestel,et al.  On Infinite Cycles I , 2004, Comb..

[21]  Reinhard Diestel,et al.  Topological paths, cycles and spanning trees in infinite graphs , 2004, Eur. J. Comb..

[22]  Reinhard Diestel,et al.  Graph-theoretical versus topological ends of graphs , 2003, J. Comb. Theory, Ser. B.

[23]  Jian Wang,et al.  Hamilton circles in infinite planar graphs , 2009, J. Comb. Theory, Ser. B.

[24]  Carsten Thomassen,et al.  Hamiltonian Paths in Squares of Infinite Locally Finite Blocks , 1978 .

[25]  David P. Sumner,et al.  Hamiltonian results in K1, 3-free graphs , 1984, J. Graph Theory.

[26]  Richard C. Brewster,et al.  On the hamiltonicity of line graphs of locally finite, 6‐edge‐connected graphs , 2012, J. Graph Theory.