Time series interpolation via global optimization of moments fitting

Most time series forecasting methods assume the series has no missing values. When missing values exist, interpolation methods, while filling in the blanks, may substantially modify the statistical pattern of the data, since critical features such as moments and autocorrelations are not necessarily preserved.

[1]  Rob J. Hyndman,et al.  Forecasting time series with multiple seasonal patterns , 2008, Eur. J. Oper. Res..

[2]  D. Rubin,et al.  Statistical Analysis with Missing Data. , 1989 .

[3]  F. Glover HEURISTICS FOR INTEGER PROGRAMMING USING SURROGATE CONSTRAINTS , 1977 .

[4]  K. Hipel,et al.  Time series modelling of water resources and environmental systems , 1994 .

[5]  Desmond P. Taylor,et al.  On the SelfSimilar Nature of Ethernet Traffic (Extended Version) , 2007 .

[6]  Pierre Hansen,et al.  Variable Neighborhood Search , 2018, Handbook of Heuristics.

[7]  Ziv Bar-Joseph,et al.  Analyzing time series gene expression data , 2004, Bioinform..

[8]  Steve Beveridge,et al.  Least squates estimation of missing values in time series , 1992 .

[9]  Nina F. Thornhill,et al.  An exploratory study to identify rogue seasonality in a steel company's supply network using spectral principal component analysis , 2006, Eur. J. Oper. Res..

[10]  Nenad Mladenovic,et al.  Gaussian variable neighborhood search for continuous optimization , 2011, Comput. Oper. Res..

[11]  Thomas Philippon,et al.  Monetary Independence in Emerging Markets: Does the Exchange Rate Regime Make a Difference? , 2001, SSRN Electronic Journal.

[12]  Walter Willinger,et al.  On the self-similar nature of Ethernet traffic , 1993, SIGCOMM '93.

[13]  Simon P. Wilson,et al.  Bayesian inference for double Pareto lognormal queues , 2010, 1011.3411.

[14]  G. C. Tiao,et al.  A Course in Time Series Analysis , 2000 .

[15]  M. Xia,et al.  Adaptive neural network model for time-series forecasting , 2010, Eur. J. Oper. Res..

[16]  Johannes Ledolter,et al.  Statistical methods for forecasting , 1983 .

[17]  M. Unser,et al.  Interpolation revisited [medical images application] , 2000, IEEE Transactions on Medical Imaging.

[18]  Minghe Sun,et al.  A hierarchical multiple kernel support vector machine for customer churn prediction using longitudinal behavioral data , 2012, Eur. J. Oper. Res..

[19]  Mirjana Cangalovic,et al.  General variable neighborhood search for the continuous optimization , 2006, Eur. J. Oper. Res..

[20]  Marco Dorigo,et al.  Optimization, Learning and Natural Algorithms , 1992 .

[21]  Stuart A. Klugman,et al.  Loss Models: From Data to Decisions , 1998 .

[22]  James Crooks,et al.  Quantifying parameter uncertainty and assessing the skill of exponential dispersion rainfall simulation models , 2013 .

[23]  Jonathan D. Cryer,et al.  Time Series Analysis , 1986 .

[24]  Jiahui Wang,et al.  Modeling Financial Time Series with S-PLUS® , 2003 .

[25]  Ahmet Arslan,et al.  A hybrid method for imputation of missing values using optimized fuzzy c-means with support vector regression and a genetic algorithm , 2013, Inf. Sci..

[26]  Mohsen Pourahmadi ESTIMATION AND INTERPOLATION OF MISSING VALUES OF A STATIONARY TIME SERIES , 1989 .

[27]  G. Ljung,et al.  A Note on the Estimation of Missing Values in Time Series , 1989 .

[28]  W. Palma Long-Memory Time Series: Theory and Methods , 2007 .

[29]  Ana E. Sipols,et al.  A time series bootstrap procedure for interpolation intervals , 2008, Comput. Stat. Data Anal..

[30]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[31]  Gwilym M. Jenkins,et al.  Time series analysis, forecasting and control , 1971 .

[32]  Daniel Peña,et al.  Missing observations in ARIMA models: Skipping approach versus additive outlier approach , 1999 .

[33]  J. Teugels,et al.  Statistics of Extremes , 2004 .

[34]  Richard H. Jones,et al.  Maximum Likelihood Fitting of ARMA Models to Time Series With Missing Observations , 1980 .

[35]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[36]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[37]  William T. M. Dunsmuir,et al.  Least absolute deviation estimation of stationary time series models , 1993 .