Permian foraminifers from the exotic limestone blocks within the Central Qiangtang Metamorphic Belt, Tibet and their geological implications

[1]  Dong-xun Yuan,et al.  A new late Kungurian (Cisuralian, Permian) conodont and fusuline fauna from the South Qiangtang Block in Tibet and their implications for correlation and paleobiogeography , 2021, Palaeogeography, Palaeoclimatology, Palaeoecology.

[2]  Z. Hou,et al.  An updated age of Permian strata in the Raggyorcaka and Qamdo areas, Tibet and their paleogeographic implications , 2021, Palaeogeography, Palaeoclimatology, Palaeoecology.

[3]  An-Bo Luo,et al.  Timing of the Meso-Tethys Ocean opening: Evidence from Permian sedimentary provenance changes in the South Qiangtang Terrane, Tibetan Plateau , 2021 .

[4]  Haishui Jiang,et al.  A late Permian–Triassic trench‐slope basin in the Central Qiangtang metamorphic belt, Northern Tibet: Stratigraphy, sedimentology, syndepositional deformation and tectonic implications , 2021, Basin Research.

[5]  Wèi Dān Passive-margin magmatism caused by enhanced slab-pull forces in central Tibet , 2020, Geology.

[6]  Wang Xu,et al.  Cambrian to Triassic geodynamic evolution of central Qiangtang, Tibet , 2020 .

[7]  Ming Wang,et al.  Petrogenesis of the southern Qiangtang mafic dykes, Tibet: Link to a late Paleozoic mantle plume on the northern margin of Gondwana? , 2019, GSA Bulletin.

[8]  王泉,et al.  南羌塘增生过程的中-晚三叠世岩浆记录:藏北玛依岗日-角木日地区基性岩墙 , 2019 .

[9]  Yong Qin,et al.  Diachronous closure of the Shuanghu Paleo-Tethys Ocean: Constraints from the Late Triassic Tanggula arc-related volcanism in the East Qiangtang subterrane, Central Tibet , 2019, Lithos.

[10]  Zhang Yu-jie,et al.  Stratigraphic and paleontological constraints on the opening time of the Bangong-Nujiang Ocean , 2019, Acta Petrologica Sinica.

[11]  Gen-hou Wang,et al.  The continental subduction in the evolution of central qiangtang mélange belt and its tectonic significance , 2018, International Geology Review.

[12]  Qiong Wu,et al.  Permian integrative stratigraphy and timescale of China , 2018, Science China Earth Sciences.

[13]  Zhenhan Wu,et al.  The Late Triassic I–Type Granites from the Longmu Co–Shuanghu Suture Zone in the interior of Tibetan Plateau, China: Petrogenesis and Implication for Slab Break–Off , 2018, Acta Geologica Sinica - English Edition.

[14]  X. Liang,et al.  Mayer Kangri metamorphic complexes in Central Qiangtang (Tibet, western China): implications for the Triassic–early Jurassic tectonics associated with the Paleo-Tethys Ocean , 2018, International Journal of Earth Sciences.

[15]  Yue Wang,et al.  Permian fusuline biostratigraphy , 2017, Special Publications.

[16]  X. Liang,et al.  Stepwise exhumation of the Triassic Lanling high‐pressure metamorphic belt in Central Qiangtang, Tibet: Insights from a coupled study of metamorphism, deformation, and geochronology , 2017 .

[17]  Yiming Liu,et al.  Remnants of late Permian–Middle Triassic ocean islands in northern Tibet: Implications for the late-stage evolution of the Paleo-Tethys Ocean , 2017 .

[18]  Qiang Wang,et al.  Metamorphic records for subduction erosion and subsequent underplating processes revealed by garnet‐staurolite‐muscovite schists in central Qiangtang, Tibet , 2017 .

[19]  Li-quan Wang,et al.  Petrogenesis of Late Devonian–Early Carboniferous volcanic rocks in northern Tibet: New constraints on the Paleozoic tectonic evolution of the Tethyan Ocean , 2017 .

[20]  R. Gao,et al.  Late Triassic syn-exhumation magmatism in central Qiangtang, Tibet: Evidence from the Sangehu adakitic rocks , 2016 .

[21]  Dong-xun Yuan,et al.  An upper Kungurian/lower Guadalupian (Permian) brachiopod fauna from the South Qiangtang Block in Tibet and its palaeobiogeographical implications , 2016 .

[22]  Ming-Rong Deng,et al.  Petrogenesis of high-Ti mafic dykes from Southern Qiangtang, Tibet: Implications for a ca. 290 Ma large igneous province related to the early Permian rifting of Gondwana , 2016 .

[23]  Qiang Wang,et al.  Carboniferous and Permian evolutionary records for the Paleo‐Tethys Ocean constrained by newly discovered Xiangtaohu ophiolites from central Qiangtang, central Tibet , 2016 .

[24]  Qing-guo Zhai,et al.  Oldest Paleo-Tethyan ophiolitic mélange in the Tibetan Plateau , 2016 .

[25]  Dong-xun Yuan,et al.  Discovery of a Sphaeroschwagerina fusuline fauna from the Raggyorcaka Lake area, northern Tibet: implications for the origin of the Qiangtang Metamorphic Belt , 2015, Geological Magazine.

[26]  N. Evans,et al.  Petrogenesis and tectonic setting of Triassic granitoids in the Qiangtang terrane, central Tibet: Evidence from U–Pb ages, petrochemistry and Sr–Nd–Hf isotopes , 2015 .

[27]  G. Wang,et al.  Tectonic evolution and high-pressure rock exhumation in the Qiangtang terrane, central Tibet , 2015 .

[28]  Ming Wang,et al.  Geochronology and geochemistry of the Dabure basalts, central Qiangtang, Tibet: evidence for ~550 Ma rifting of Gondwana , 2015 .

[29]  Huang Jin Characteristics and Geological Significance of Trace Elements from the Middle Permian Longge Formation Mudstones in the Jiaomuri Area, Qiangtang Basin , 2015 .

[30]  A. Pullen,et al.  Mesozoic tectonic history and lithospheric structure of the Qiangtang terrane: Insights from the Qiangtang metamorphic belt, central Tibet , 2014 .

[31]  P. Bons,et al.  Origin and pre-Cenozoic evolution of the south Qiangtang basement, Central Tibet , 2014 .

[32]  G. Shi,et al.  Permian Fusuline Fauna from the Lower Part of the Lugu Formation in the Central Qiangtang Block and its Geological Implications , 2014 .

[33]  Hu Junji Geochemical Characteristics and Its Application to Depositional Environment Analysis of Permian Carbonates in Jiaomuri Area,Qiangtang Basin , 2014 .

[34]  Dong-xun Yuan,et al.  Artinskian (Early Permian) fusuline fauna from the Rongma area in northern Tibet: palaeoclimatic and palaeobiogeographic implications , 2013 .

[35]  Kuo‐Lung Wang,et al.  SHRIMP zircon U-Pb geochronology, geochemistry and Sr-Nd-Hf isotopic compositions of a mafic dyke swarm in the Qiangtang terrane, northern Tibet and geodynamic implications , 2013 .

[36]  G. Shi,et al.  A review of Permian stratigraphy, palaeobiogeography and palaeogeography of the Qinghai-Tibet Plateau , 2013 .

[37]  Kuo‐Lung Wang,et al.  The Carboniferous ophiolite in the middle of the Qiangtang terrane, Northern Tibet: SHRIMP U–Pb dating, geochemical and Sr–Nd–Hf isotopic characteristics , 2013 .

[38]  I. Metcalfe Gondwana dispersion and Asian accretion: Tectonic and palaeogeographic evolution of eastern Tethys , 2013 .

[39]  Dong-xun Yuan,et al.  Kungurian (Late Cisuralian) fusuline fauna from the Cuozheqiangma area, northern Tibet and its palaeobiogeographical implications , 2012 .

[40]  L. Ding,et al.  Tectonostratigraphy and provenance of an accretionary complex within the Yarlung-Zangpo suture zone, southern Tibet: Insights into subduction-accretion processes in the Neo-Tethys , 2012 .

[41]  G. Shi,et al.  Tectonic evolution of the Qiangtang Block, northern Tibet during the Late Cisuralian (Late Early Permian): Evidence from fusuline fossil records , 2012 .

[42]  Yang Liu,et al.  Structural sequence and geochronology of the Qomo Ri accretionary complex, Central Qiangtang, Tibet: Implications for the Late Triassic subduction of the Paleo-Tethys Ocean , 2012 .

[43]  Li Su,et al.  Triassic Subduction of the Paleo-Tethys in northern Tibet, China: Evidence from the geochemical and isotopic characteristics of eclogites and blueschists of the Qiangtang Block , 2011 .

[44]  Qing-guo Zhai,et al.  Triassic eclogites from central Qiangtang, northern Tibet, China: Petrology, geochronology and metamorphic P–T path , 2011 .

[45]  G. Gehrels,et al.  Metamorphic rocks in central Tibet: Lateral variations and implications for crustal structure , 2011 .

[46]  Dunyi Liu,et al.  Detrital zircon age model of Ordovician Wenquan quartzite south of Lungmuco-Shuanghu Suture in the Qiangtang area, Tibet: Constraint on tectonic affinity and source regions , 2011 .

[47]  Qing-guo Zhai,et al.  SHRIMP U-Pb dating and Hf isotopic analyses of Middle Ordovician meta-cumulate gabbro in central Qiangtang, northern Tibetan Plateau , 2010 .

[48]  Shi Jian-rong Identification of the eclogites with different ages and their tectonic significance in central Qiangtang,Tibetan Plateau: Constraints from ~(40)Ar-~(39)Ar geochronology. , 2010 .

[49]  Hu Pei-yuan Petrology and geochronology of Guoganjianianshan Permian ophiolite in central Qiangtang,Qinghai-Tibet Plateau,China. , 2010 .

[50]  Zhai Qing Petrology, mineralogy and ~(40)Ar/~(39)Ar chronology for Rongma blueschist from central Qiangtang, northern Tibet , 2009 .

[51]  Wu Yan-wang Magma homology of mafic dyke and basalt in southern Qiangtang, northern Tibet, China , 2009 .

[52]  G. Gehrels,et al.  Mediterranean-style closure of the Paleo-Tethys ocean , 2008 .

[53]  Hu Xiao-peng High-pressure metamorphic belt in Qiangtang, Qinghai-Tibet Plateau, and its tectonic significance. , 2008 .

[54]  Zhu Tongxing SHRIMP U-Pb zircon dating of Eopaleozoic cumulate in Guoganjianian Mt. from central Qiangtang area of northern Tibet—Considering the evolvement of Proto-and Paleo-Tethys , 2008 .

[55]  Qing-guo Zhai,et al.  The fragment of Paleo-Tethys ophiolite from central Qiangtang, Tibet: Geochemical evidence of metabasites in Guoganjianian , 2007 .

[56]  Yuxiu Zhang,et al.  The blueschist-bearing Qiangtang metamorphic belt (northern Tibet, China) as an in situ suture zone: Evidence from geochemical comparison with the Jinsa suture , 2006 .

[57]  T. Zhao,et al.  Eclogites from central Qiangtang, northern Tibet (China) and tectonic implications , 2006 .

[58]  Qing-guo Zhai,et al.  Discovery of eclogite and its geological significance in Qiangtang area, central Tibet , 2006 .

[59]  Yi‐chun Zhang,et al.  The polydiexodina (fusulinids) fauna from central Qiangtang, Tibet, China , 2005 .

[60]  Yi‐chun Zhang,et al.  Discovery of Ordovician-Devonian strata in the south of the Qiangtang area, Tibet , 2004 .

[61]  T. Harrison,et al.  Tectonic evolution of the early Mesozoic blueschist‐bearing Qiangtang metamorphic belt, central Tibet , 2003 .

[62]  Yujing Wang,et al.  Fusulinoidean faunal succession of a Paleo–Tethyan oceanic seamount in the Changning–Menglian Belt, West Yunnan, Southwest China: An overview , 2003 .

[63]  L. Ding,et al.  Discovery of blueschists in Gangmar-Taoxing Co area, central Qiangtang, Northern Tibet , 2000 .

[64]  T. Harrison,et al.  Blueschist-bearing metamorphic core complexes in the Qiangtang block reveal deep crustal structure of northern Tibet , 2000 .

[65]  E. Leven,et al.  FORAMINIFERA FROM THE EXOTIC PERMO-CARBONIFEROUS LIMESTONE BLOCKS IN THE KARAKAYA COMPLEX, NORTHWESTERN TURKEY , 1996 .

[66]  J. W. Skinner,et al.  Permian fusulinids from Sicily , 1966 .

[67]  ススム ホンジョウ Neoschwagerinids from the Akasaka limestone : a paleontological study of the Akasaka limestone, 1st report , 1959 .

[68]  M. Thompson Permian fusulinids from Afghanistan , 1946 .

[69]  S. LeeJ Taxonomic criteria of Fusulinidae with notes on seven new Permian genera , 1934 .

[70]  H. Yabe,et al.  Tentative Classification of the Foraminfera of the Fusulindae , 1932 .

[71]  Y. Ozawa Stratigraphical studies of the Fusulina limestone of Akasaka, Province of Mino , 1927 .

[72]  G. E. Condra,et al.  The Fusulinidae of the Pennsylvanian system in Nebraska , 1927 .

[73]  Melle M Colani Nouvelle contribution a l'etude des fusulinides de l'Extreme-Orient. , 1924 .

[74]  J. Deprat Les Fusulinidés des Calcaires carbonifériens et Permiens du Tonkin, du Laos et du Nord-Annam , 1913 .

[75]  H. Yabe ON A FUSULINA-LIMESTONE WITH HELICOPRION IN JAPAN. : With a Map and a Plate., , 1903 .